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1.  Introduction 
 
Recent clinical studies have proved that computer-aided diagnosis (CAD) systems are 

helpful for improving cancer detection by radiologists on mammograms1-6.  To evaluate the  
effectiveness of a CAD system in detecting cancers that are likely to be missed by radiologists, 
one way is to study its accuracy in detecting missed cancers on prior mammograms (the 
mammograms in previous exams on which the cancer can be seen retrospectively).  Several 
studies have demonstrated that CAD systems have potential ability to detect missed cancers on 
prior mammograms7-11.  However, the performance of a CAD system on prior mammograms is 
generally much lower than their performance on the current mammograms (the mammogram on 
which cancer is detected). Recently, one study investigated the performance change between 
prior mammograms and current mammograms when using the CAD system trained by current 
mammograms and another by prior mammograms.  It was concluded that CAD schemes trained 
with the current mammograms do not perform optimally in detecting masses depicted on prior 
images and vice versa.   

 
The goal of this proposed project is to develop a CAD system using advanced computer 

vision techniques to detect masses using retrospectively detected cancers on prior mammograms 
and incorporate the developed CAD system into our current CAD system.  We hypothesize that a 
dual CAD system, which combines a system trained with subtle lesions retrospectively seen on 
prior mammograms and a system trained with cancers detected on current mammograms, should 
increase the sensitivity of detecting cancers at the early stage without compromising its ability to 
detect less subtle cancers.  To accomplish this goal, we will (1) collect a large database of masses 
on digitized prior and current film mammograms (DFMs) for training and testing the CAD 
system, (2) develop single-view computer vision techniques for mass detection and classification 
in prior DFMs, (3) reduce false positives (FPs) by correlation of image information from two-
view mammograms, (4) combine the new CAD system with our current CAD system without an 
increase in overall FPs, and (5) perform ROC study to evaluate the effects of CAD on 
radiologists’ accuracy in detecting subtle cancers. Although we do not plan to develop such a 
system for digital mammograms because there will not be enough prior digital mammograms 
with cancers available for the development, the general methodology developed in this study can 
be adapted to CAD systems for digital mammograms in the future.   

 
At the conclusion of this project, we expect that a fully automated CAD system will be 

developed which can be used for detection of masses on DFMs.  The general methodology 
developed in this study may also be adapted to develop similar software for other CAD systems.  
The significance of this project is that it will develop a CAD system which can further improve 
radiologists’ accuracy in detecting breast cancers at an early stage.  Since early detection and 
treatment can reduce breast cancer mortality rate, the CAD system will be useful for increasing 
the effectiveness of mammographic screening.   
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(5) Body 
 
 The current year (6/1/05-5/31/06) is the second year of the project.  We will describe in 
the following details of the studies that we performed this year. 
 
(A) Collection of a Database of Digitized Screen-film Mammograms (DFM) with 

Multiple Examinations 
 

In this project year, we continue to collect a data set of digitized screen-film 
mammogram from patient files in the Department of Radiology at the University of Michigan 
with Institutional Review Board (IRB) approval.  Two independent data sets of mammograms 
were collected for this study; one contained mammograms with masses and the other contained 
normal mammograms.  The normal data set was used to estimate the false positive (FP) marker 
rates during testing12-14.  To date, the mass data set contained 160 cases with 160 masses.  90 of 
the masses are biopsy proven to be malignant and 56 to be benign. The remaining 14 masses are 
considered benign by long-term follow-up.  Each case included the current mammograms on 
which the mass was detected by radiologists, and the prior mammograms obtained from previous 
exams.  The mass set contained 320 current mammograms and 406 prior mammograms. The true 
location of each mass was identified by an experienced Mammography Quality Standards Act 
(MQSA) radiologist.  The radiologist also measured the mass size and provided descriptions of 
the mass margin, shape, conspicuity, and breast density. 
 
(B) Investigation of a Regularized discriminant analysis for breast mass detection 
 

The first study of this project is to develop a single CAD system for mass detection on 
prior DFMs.  In computer-aided detection (CAD) applications, an important step is to design a 
classifier for the differentiation of the abnormal from the normal structures.  We have previously 
developed a stepwise linear discriminant analysis (LDA) method with simplex optimization for 
this purpose.  In this year, we have performed a preliminary study to investigate the performance 
of a regularized discriminant analysis (RDA) classifier in combination with a feature selection 
method for classification of the masses and normal tissues detected on mammograms.  Our 
preliminary results were presented at the SPIE meeting in 200615.  The study is summarized in 
the following. 

 
1) Data Set 
 
IRB approval was obtained prior to the commencement of this investigation. The images 

used in this study were acquired at the University of Michigan with a GE Senographe 2000D 
FFDM system before biopsy. The GE system has a CsI phosphor/a:Si active matrix flat panel 
digital detector with a pixel size of mm µµ 100100 ×  and 14 bits per pixel.  A data set of 130 cases 
was used.  All cases had two mammographic views, the craniocaudal (CC) view and the 
mediolateral oblique (MLO) view or the lateral (LM or ML) view.  The data set contained 130 
biopsy-proven masses.  The true locations of the masses were identified by a Mammography 
Quality Standards Act radiologist.  

 
2) Methods 
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2.1) Discriminant Analysis 

Assume that the class distributions are multivariate normal in a two-class classification 
problem.  Under this condition, discriminant analysis models differ essentially by the specific 
assumptions on the mean vectors and covariance matrices of the group conditional densities.  
The most commonly used model is linear discriminant analysis (LDA) which assumes that the 
group conditional distributions are multivariate normal distributions with mean vectors kµ , 
where k = 1, 2 is the class index, and equal covariance matrix Σ .  The definition of LDA is given 
in Eq. (1). 

  XY T 1
21 )( −−= Σµµ                                                           (1) 

where XT=(x1, …, xn) is the feature vector of a sample and n is the dimensionality of the feature 
space.   If the covariance matrices are not equal, one can use quadratic discriminant analysis 
(QDA), which has a quadratic term for the feature vector in its model.  The definition of QDA is 
described in Eq. (2).  
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The parameters in LDA and QDA are usually unknown and have to be estimated from training 
samples.  In medical imaging applications, the sample size may be very small in comparison 
with the dimensionality of the feature space.   A regularization technique for discriminant 
analysis, referred to as regularized discriminant analysis (RDA)16, makes use of a complexity 
parameter and a shrinkage parameter to design an intermediate classification model between 
LDA and QDA.  The covariance matrices can thus be written as:  

Itr
p kkk ][)1(ˆ ΣΣΣ γγ +−=  ,    k=1, 2                                        (3) 

where I  is the identity matrix, γ  and p  are the complexity parameter and the shrinkage 
parameter, respectively.  In this work, we investigated the use of the RDA classifier for FP 
reduction in a mass CAD system. 
 

2.2) Feature Selection 
In order to obtain the best texture feature subset and reduce the dimensionality of the feature 

space to design an effective classifier, feature selection was applied to the training set.  Stepwise 
LDA feature selection with Wilks' lambda as the selection criterion was employed in our 
previous study.    Simplex optimization procedure was used to choose the best set of feature 
selection parameters which includes a threshold Fin for feature entry, a threshold Fout for feature 
removal, and a tolerance threshold T for excluding features that have high correlation with the 
features already in the selected pool.  In this study, we compared a new stepwise feature 
selection procedure with the current method.  In the proposed method, a feature selection scheme 
which combines forward stepwise feature selection and backward stepwise feature elimination is 
used to obtain the best feature subset, using the area under the receiver operating characteristic 
(ROC) curve, Az, as the selection criterion instead of Wilks' lambda.  We evaluated the classifier 
performance using a leave-one-case-out resampling scheme within the training set, the test 
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discriminant scores from the left-out cases were analyzed using ROC methodology.  The 
discriminant scores were input as the decision variable in the LABROC program, which fits a 
binormal ROC curve based on maximum likelihood estimation.  The performances of the RDA 
classifier and the LDA classifier, both with the new feature selection method, were compared to 
that of the LDA classifier using the Wilks' lambda as the stepwise feature selection criterion in 
terms of their Az for the classification of masses and normal tissue. 

 
3) Results 

 
We randomly separated the cases in our data set into two independent data subsets: 66 

and 64 cases.  The training and testing were performed using the cross validation method.  The 
detection performance of the CAD system was assessed by free response receiver operating 
characteristic (FROC) analysis.  FROC curves were presented on a per-mammogram and a per-
case basis.  For mammogram-based FROC analysis, the mass on each mammogram was 
considered as an independent true object. For case-based FROC analysis, the same mass imaged 
on the two-view mammograms was considered to be one true object and the detection of either 
or both masses on the two views was considered to be a true-positive (TP).  The average test 
FROC curve was obtained by averaging the FP rates at the same sensitivity along the two 
corresponding test FROC curves from the 2-fold cross validation.  The CAD system using RDA 
with the new feature selection method achieved an image-based sensitivity of 60%, 65%, and 
70% at 1.1, 1.4, and 1.6 FPs/image, respectively, compared with 1.4, 1.7, and 2.1 FPs/image for 
the CAD system using LDA with the new feature selection method.  The CAD system with 
stepwise LDA and simplex optimization achieved FP rates of 1.6, 1.9, and 2.2 FPs/image, 
respectively, at the same sensitivities, which were comparable to the FP rates of the CAD system 
using LDA with the new feature selection method.  Figures 1(a) and 1(b) show the comparison 
of the image-based and case-based average FROC curves of the CAD systems using the three 
different classification methods, respectively. 
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Figure 1.   Comparison of FROC curves. OFS: stepwise feature selection with simplex optimization.  
NFS: feature selection combining forward feature selection and backward feature elimination.  
(a) image-based FROC curve, (b) case-based FROC curve. 
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(C) Development of a two-view information fusion method 
 

The second study performed in this project year is to develop a two-view information 
fusion method to improve the performance of our CAD system for mass detection.  Our 
preliminary results were presented at the SPIE meeting in 200617.  The study is summarized in 
the following. 
 

1) Data Set 
 

All mammograms in this study were collected from patient files at the University of 
Michigan with IRB approval.  The mammograms were digitized with a LUMISYS 85 laser film 

scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was calibrated to 
have a linear relationship between gray levels and optical densities (O.D.) from 0.1 to greater 
than 3 O.D. units.  The nominal O.D. range of the scanner is 0–4.  The full resolution 
mammograms were first smoothed with a 2×2 box filter and subsampled by a factor of 2, 
resulting in images with a pixel size of 100µm×100µm.  These images were used for the input of 
our CAD system.  The data set we used in this study contained 475 cases, of which 464 cases 
had the two-view mammograms (the CC view and the MLO view or the lateral view) and 11 
cases had four-view mammograms, resulting in a total of 972 mammograms.  All mammograms 
were obtained before biopsy.  There were 475 biopsy-proven masses in this data set.  
 

 
2) Methods 

 
In order to improve the overall performance of our CAD system for detection of masses, 

we developed a two-view fusion technique which combines the information from two 
mammographic views.   The fusion method used in this study is based on the assumption that the 
corresponding true mass on two different mammographic views will exhibit similarities in their 
geometric, morphological and textural features which are relatively invariant with respect to the 
imaging views.  On the other hand, FPs detected by CAD system are expected to exhibit a lesser 
degree of similarity because they are usually objects formed by different normal tissues.   

 
For a given object on one view, geometric pairing is first performed using the nipple-to-

object distance as the average radius of an annular region on the other view within which the 
detected objects can be paired with the given object.  Manually identified nipple locations are 
used for the registration in this study.  We are developing an automated nipple detection 
technique18 and the automated method will be used when it reaches high accuracy.  Similarity 
measures between each pair of objects are derived from the pairs of individual object features.  
The similarity features include morphological features, Hessian feature, correlation coefficients 
between the two paired objects and texture features.  A similarity classifier is trained to 
distinguish between true and false pairs by merging the similarity features into a similarity score 
for each object.  The similarity score and the single-view object score of the object are then fused 
to form a final score for the object.  Our two-view system is summarized in Figure 2. 
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Figure 2.  Block diagram of the two-view CAD system for mass detection on mammograms. 
 
 

3) Results   
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Figure 3. Comparison of the average test FROC curves obtained by averaging the FROC curves 

from the two independent mass subsets.  Single-view: detection by the single-view CAD 
system. Two-view: detection by the two-view CAD system.  (a) Image-based FROC 
curves, (b) Case-based FROC curves. 

 

Mammograms 

Single-view 
CAD Scores 

 

Single-view CAD 
(5 objects per image) 

 

Two-view Geometric Pairing 
 

Similarity Measure 
 

Similarity Classifier 
 

Similarity Scores 
 

Two-view Information Fusion 
 



 10 

 
We randomly separated the cases in our data set into two independent equal sized data sets: 

243 cases with 494 images and 232 cases with 478 images.  The training and testing were 
performed using the 2-fold cross validation method.  The detection performance of the CAD 
system was assessed by FROC analysis.  FROC curves were presented on a per-mammogram 
and a per-case basis.  To evaluate the overall test performance, an average test FROC curve was 
obtained as described above.  When the single-view CAD system was applied to the test set, the 
FPs/image were 2.0, 1.5, and 1.2 at the case-based sensitivities of 90%, 85% and 80%, 
respectively.  With the two-view CAD system, the FP rates were improved to 1.7, 1.3, and 1.0 
FPs/image at the same case-based sensitivities.  Figures 3(a) and 3(b) show the comparison of 
the test performance of the single-view CAD system and the two-view CAD systems by using 
image-based and case-based average FROC curves, respectively.   
 
 
(D) Development of a fusion scheme to combine two CAD systems 
 

In this project year, we continued to develop a fusion scheme to combine two single CAD 
systems.  We have recently submitted a journal paper to Medical Physics19. The detailed methods 
and results of the study can be found in the enclosed manuscript (Appendix). The study is 
summarized in the following. 
 

1) Data Set 
 

We collected three data sets.  The first data set contained 115 cases with confirmed 
masses.  Each case included the current mammograms that prompted the radiologist to work up 
the mass.  This is referred to as the “average” mass set.  All of the cases in the average mass set 
had two mammographic views: the CC view and the MLO view or the lateral view, thus yielding 
a total of 230 mammograms.  There were 115 masses (67 malignant masses and 48 benign 
masses) in this data set, of which 105 were biopsy-proven and 10 were determined to be benign 
by long-term follow-up.   

 
The second data set was composed of the prior mammograms dated one to two years 

earlier than the mammograms of the same patients in the average mass set. Since the masses on 
prior mammograms are on average subtler than those on current mammograms, this data set is 
referred to as the “subtle” mass set.  On five of the 115 patients, no mass or focal density could 
be identified on either view of the prior mammograms.  Therefore, the subtle mass set was 
composed of 110 cases (62 malignant and 48 benign).  For the purpose of training the subtle 
mass detection system, the subtle masses do not have to be obtained from the same cases as the 
average mass set but we used the available prior mammograms for these mass cases in our 
database.  Nineteen of the 110 cases had two prior mammogram examinations.  Of the 129 
examinations in the subtle mass set, 123 had two mammographic views and 6 had three views, 
with a total of 264 mammograms.   
 

The third data set was composed of 260 normal bilateral two-view mammograms 
obtained from 65 patients.  No masses were evident on these mammograms upon review by the 
experienced radiologist. 
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2) Methods 

 
During the training of the dual system, we used the current and prior mammograms from 

the same patients.  The current mammograms that contained the average masses were only used 
to train the first single CAD system.  The prior mammograms that contained the subtle masses 
were only used to train the second single CAD system.  The prescreening and the segmentation 
steps in the two systems are identical. Since the morphological appearances of average and 
subtle masses are different, the rules in the morphological rule-based FP classification are trained 
differently for the two single CAD systems.  During testing with an independent mammogram, 
the dual system keeps all the suspicious objects that satisfy the FP classification rules of either 
single CAD system and applies the LDA classifiers from both single systems to each object.  
Each object thus has two LDA scores. 
 

To merge the information from the two CAD systems, a fusion scheme was developed 
for our dual system.  In this study, a feed-forward backpropagation artificial neural network (BP-
ANN) was trained to classify the masses from normal tissues by combining the output 
information from the two single CAD systems.  The LDA classifiers from the two single CAD 
systems were applied to each detected object.  The two LDA discriminant scores for each object 
were used as input to the BP-ANN.  The BP-ANN had an input layer with two nodes, a hidden 
layer with N nodes, and an output layer with one node.  The nodes were interconnected by 
weights and information propagated from one layer to the next through a log-sigmoidal 
activation function.  The learning of the ANN was a supervised process in which known training 
cases were input to the ANN.  The performance function for the network was the mean-squared 
error between the network outputs and the target outputs.  The weights of the network were 
adjusted iteratively by a feedforward backpropagation procedure to minimize the error.  Detailed 
description of the backpropagation neural network can be found in the literature20,21. 
 

To test the dual system, the two trained single CAD systems, one trained with the average 
mass set and the other with the subtle mass set, were applied in parallel to each single 
“unknown” mammogram in the independent test subset.  No prior mammogram was needed 
during testing.   
 

3) Results 
 

An important purpose of a CAD system is to serve as a second reader to alert 
radiologists to subtle cancers that may be overlooked.  In this project year, we compared the 
performance of dual system approach with single CAD system using the data set with subtle 
masses in prior mammograms.  Figure 4 and Figure 5 compare the average FROC curves of the 
single CAD system and the dual system for detection in the test subsets.  The TP rate in Figure 4 
was estimated by including both malignant and benign masses and that in Figure 5 was estimated 
from malignant masses only.  The single CAD system trained with average masses alone was 
used. The FP rates for both systems were estimated from the mammograms without masses.  The 
dual CAD system achieved a case-based sensitivity of 50% at 0.7 FP marks/image for all masses 
and at 0.5 FP marks/image for malignant masses only, compared with 1.4 FP marks/image for all 
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masses and 1.1 FP marks/image for malignant masses only using the single CAD system.  The 
results in Fig. 5 indicate that if the CAD system threshold was set at about 0.5 FP marks/image, 
about 50% of the malignant masses in our database could have been detected and pointed out to 
the radiologists by the dual CAD system on the prior mammograms.  The radiologists might 
have worked up some of these malignant masses during the prior exam and found these cancers 
earlier.  Without the new dual CAD system approach, about 25% of the malignant cancers would 
still be detected by the use of a regular CAD system, but the benefit of CAD was almost doubled 
by the dual CAD system approach. 
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Figure 4. Comparison of the average test FROC curves for the single CAD system and the dual 
CAD system for detection of the subtle masses on the prior mammograms. The single CAD 
system trained with average masses alone was used and the FP rate was estimated from the 
mammograms without masses.  (a) Image-based FROC curves, (b) Case-based FROC 
curves. 
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Figure 5. Comparison of the average test FROC curves for the single CAD system and the dual 
CAD system for detection of subtle malignant masses on the prior mammograms.  The 
single CAD system trained with average masses alone was used and the FP rate was 
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estimated from the mammograms without masses.  (a) Image-based FROC curves, (b) 
Case-based FROC curves. 

 
 
 (6)  Key Research Accomplishments 
 
• Continue to collect the data sets of digitized film mammograms with multiple examinations. 

(Task 1). 
 
• Investigation of a Regularized discriminant analysis for breast mass detection (Task 2). 
 
• Development of a two-view information fusion method (Task 3). 
 
• Continue to develop a fusion scheme to combine two CAD systems (Task 4). 
 
 
(7)       Reportable Outcomes 
 

As a result of the support by the USAMRMC BCRP grant, we have conducted studies to 
develop a computer-aided diagnosis system for early detection of masses using retrospectively 
detected cancers on prior mammograms.  We have presented the results of these investigations in 
this project year and a journal article which was accepted for publication last year had been 
published in this project year.   Also, we have submitted another journal paper to Medical 
Physics. 
 
Journal Articles: 
 
1. Wei J, Sahiner B, Hadjiiski LM, Chan HP, Petrick N, Helvie MA, Roubidoux MA, Ge J, 

Zhou C. Computer-aided detection of breast masses on full field digital mammograms. 
Medical Physics, Vol. 32, No. 9, pp. 2827-2837, 2005. 

2. Wei J, Chan HP, Sahiner B, Hadjiiski LM, Helvie MA, Roubidoux MA, Zhou C, Ge J, 
"Dual system approach to computer-aided detection of breast masses on mammograms", 
Medical Physics (submitted) 

 
Conference Proceeding: 
 
1. Wei J, Sahiner B, Zhang Y, Chan HP, Hadjiiski LM, Zhou C, Ge J, and Wu YT, 

"Regularized discriminate analysis for breast mass detection on full field digital 
mammograms," SPIE Proc. 6144, 61445P-1~6 (2006). 

2. Wei J, Sahiner B, Hadjiiski LM, Chan HP, Helvie MA, Roubidoux MA, Zhou C, Ge J, and 
Zhang Y, "Two-view information fusion for improvement of computer-aided detection 
(CAD) of breast masses on mammograms," SPIE Proc. 6144, 614424-1~7 (2006). 
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(8)  Conclusions 
 

During this project year, we first investigated the use of an RDA classifier with a new 
feature selection method to improve our single CAD system.  Our results indicated that RDA in 
combination with the sequential forward inclusion-backward elimination feature selection 
method had potential to improve the performance of mass detection on mammograms.  Further 
study is underway to test our method with a larger data set.  

 
As a second study, we performed a preliminary study to develop a two-view information 

fusion method for improvement of our single CAD system.  The improvement by using two-
view information fusion was found to be statistically significant (p<0.05) by the AFROC 
method.  

 
The third study in this project year is to continue to improve the performance of our mass 

detection system by using a new dual system approach which combines a CAD system optimized 
with ”average” masses with another CAD system optimized with “subtle” masses.  The statistical 
significance of the differences in the FROC curves of the different systems was estimated by 
using both the alternative free-response ROC (AFROC) method and the jackknife free-response 
ROC (JAFROC) method.  Our results indicate that the dual CAD system approach can improve 
significantly (p<0.05) the performance of mass detection on mammograms compared to that 
obtained by training a single CAD system with the average masses alone or with both the 
average and the subtle masses by either the AFROC or the JAFROC method. 

 
From the results of these studies, we found that our proposed dual CAD system approach 

is a very promising method to further improve radiologists’ accuracy in detecting breast cancers 
at an early stage.  We will continue to develop the CAD system in this direction in the coming 
project year. 
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We are developing a computer-aided detection �CAD� system for breast masses on full field digital
mammographic �FFDM� images. To develop a CAD system that is independent of the FFDM
manufacturer’s proprietary preprocessing methods, we used the raw FFDM image as input and
developed a multiresolution preprocessing scheme for image enhancement. A two-stage prescreen-
ing method that combines gradient field analysis with gray level information was developed to
identify mass candidates on the processed images. The suspicious structure in each identified region
was extracted by clustering-based region growing. Morphological and spatial gray-level depen-
dence texture features were extracted for each suspicious object. Stepwise linear discriminant
analysis �LDA� with simplex optimization was used to select the most useful features. Finally,
rule-based and LDA classifiers were designed to differentiate masses from normal tissues. Two data
sets were collected: a mass data set containing 110 cases of two-view mammograms with a total of
220 images, and a no-mass data set containing 90 cases of two-view mammograms with a total of
180 images. All cases were acquired with a GE Senographe 2000D FFDM system. The true
locations of the masses were identified by an experienced radiologist. Free-response receiver oper-
ating characteristic analysis was used to evaluate the performance of the CAD system. It was found
that our CAD system achieved a case-based sensitivity of 70%, 80%, and 90% at 0.72, 1.08, and
1.82 false positive �FP� marks/image on the mass data set. The FP rates on the no-mass data set
were 0.85, 1.31, and 2.14 FP marks/image, respectively, at the corresponding sensitivities. This
study demonstrated the usefulness of our CAD techniques for automated detection of masses on
FFDM images. © 2005 American Association of Physicists in Medicine.
�DOI: 10.1118/1.1997327�

Key words: computer-aided detection, full field digital mammogram �FFDM�, multiresolution im-
age enhancement, gradient field analysis, stepwise linear discriminant analysis
I. INTRODUCTION

Breast cancer is one of the leading causes of death among
American women between 40 and 55 years of age.1 It has
been reported that early diagnosis and treatment can signifi-
cantly improve the chance of survival for patients with breast
cancer.2–4 Although mammography is the best available
screening tool for detection of breast cancers, studies indi-
cate that a substantial fraction of breast cancers that are vis-
ible upon retrospective analyses of the images are not de-
tected initially.5–8 Computer-aided diagnosis �CAD� is
considered to be one of the promising approaches that may
improve the sensitivity of mammography.9,10 Computer-
aided lesion detection can be used during screening to reduce
oversight of suspicious lesions that warrant further work-up.
Computer-aided lesion characterization can assist in the esti-
mation of the likelihood of malignancy of lesions by using
image and/or other information during the diagnostic stage.
The majority of studies to date show that CAD can improve
radiologists’ lesion detection sensitivity,11–16 although Gur et
al.17 found that CAD had no significant effect on the radi-
ologists in their academic setting when they averaged the
results from both low-volume and high-volume radiologists.

18
Further analysis of Gur’s data by Feig et al. indicated that
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the 17 low-volume radiologists in Gur’s study achieved simi-
lar increase in sensitivity as reported in other studies. The
outcome of CAD studies therefore depends on the study de-
sign and data analysis.

A number of investigators have reported CAD algorithms
for detection of masses on mammograms. Their approaches
to prescreening of mass candidates were based primarily on
mass characteristics including: �1� asymmetric density be-
tween left and right mammograms,19–22 �2� texture,23,24 �3�
spiculation,25,26 �4� gray level contrast,27–31 and �5�
gradient.32 Some of these approaches were refined with a
combination of the mass characteristics. Feature classifiers
were then used to further differentiate masses from normal
breast tissues.

Most mammographic CAD algorithms developed so far
are based on digitized screen-film mammograms �SFMs�. In
the last few years, full field digital mammographic �FFDM�
technology has advanced rapidly because of the potential of
digital imaging to improve breast cancer detection. Several
manufacturers have obtained clearance from the FDA for
clinical use. It is expected that FFDM detectors will provide
higher signal-to-noise ratio �SNR� and detective quantum ef-

ficiency, wider dynamic range, and higher contrast sensitivity

2827„9…/2827/12/$22.50 © 2005 Am. Assoc. Phys. Med.
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than digitized mammograms. The spatial resolution of digital
detectors may also be different from that of digitized SFMs
even when their pixel pitches are equal. Li et al. investigated
the performance of their CAD system on mass detection that
was developed for SFMs and modified for FFDMs.33 Their
preliminary results on a small data set showed that it
achieved 60% sensitivity at 2.47 false positives �FPs�/image.
It is expected that proper adaptation based on the imaging
characteristics of FFDMs and re-training of the CAD system
with FFDMs would improve the performance. Because of
the higher SNR and linear response of digital detectors, there
is also a strong potential that more effective feature extrac-
tion techniques can be designed to optimally extract signals
from the image and improve the accuracy of CAD. Several
commercial CAD systems already obtained FDA approval
for use with FFDMs. The commercial CAD systems gener-
ally reported similar performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed jour-
nals so that the data set and algorithm are unknown. Re-
cently, an assessment study34 to compare the performance of
two commercial and one research CAD system for SFMs
showed that their mass detection sensitivities ranged from
67% to 72% and the FP rates ranged from 1.08 to 1.68 per
four-view examinations. The differences in sensitivities were
not significant whereas the differences in the FP rates were
significant, depending on the examinations and CAD sys-
tems used.34

We have developed a CAD system for the detection of
masses on SFMs in our previous studies.30,35,36 We are de-
veloping a mass detection system for mammograms acquired
directly by a FFDM system. In this study, we adapted our
mass detection system developed for SFMs to FFDMs by
optimizing each stage and retraining. In an effort to develop
a CAD system that is less dependent on the FFDM manufac-
turer’s proprietary preprocessing methods, we used the raw
FFDM as input and developed a multiresolution preprocess-
ing scheme for image enhancement. A new technique was
also designed for prescreening of mass candidates on the
preprocessed images.

II. MATERIALS AND METHOD

A. Data sets

The mammograms were collected from patient files at the
Department of Radiology with Institutional Review Board
approval. Digital mammograms at the University of Michi-
gan are acquired with a GE Senographe 2000D FFDM sys-
tem. The GE system has a CsI phosphor/a :Si active matrix
flat panel digital detector with a pixel size of 100 �m
�100 �m and 14 bits per pixel. In this study, we used two
data sets: a mass set containing FFDMs with malignant or
benign masses and a no-mass set containing FFDMs without
masses. The no-mass set was obtained from microcalcifica-
tion cases collected for the development of our microcalcifi-
cation CAD systems. The cases were included as normal,
with respect to masses, only if they were verified to be free
of masses by an experienced Mammography Quality Stan-

dards Act �MQSA� radiologist. Our mass detection system
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aims at application to screening mammography so that the
mass cases, regardless of malignant or benign, are considered
positive. All cases had two mammographic views, the cran-
iocaudal view and the mediolateral oblique view or the lat-
eral �LM or ML� view. The mass set contained 110 cases
with a total of 220 images. The no-mass set contained 90
cases with a total of 180 images. The mass data set was used
to estimate the detection sensitivity and the no-mass data set
was used for estimating the FP rate. There were a total of 110
biopsy-proven masses in the mass data set. Eighty-seven of
the masses were benign and 23 of the masses were malig-
nant. A MQSA radiologist identified the locations of the
masses, measured the mass sizes as the longest dimension
seen on the two-view mammograms, provided descriptors of
the mass shapes and mass margins, and also provided an
estimate of the breast density in terms of BI-RADS category.
Figure 1 shows the information of our data set which in-
cludes the distributions of mass sizes, mass shapes, mass
margins, and breast density.

B. Methods

Our CAD system consists of five processing steps: �1�
preprocessing by using multiscale enhancement, �2� pre-
screening of mass candidates, �3� identification of suspicious
objects, �4� feature extraction and analysis, and �5� FP reduc-
tion by classification of normal tissue structures and masses.
The block diagram for the detection scheme is shown in Fig.
2. These steps are described in more detail in the following.

We randomly separated the mass data set into two inde-
pendent, equal sized subsets. Each subset contained 55 cases
with 110 images. Cross validation was used for training and
testing the algorithms. The training included selecting the
preprocessing Laplacian pyramid reconstruction weights, ad-
justing the filter weights for prescreening and clustering, de-
termining thresholds for rule-based classification, and select-
ing morphological and texture features and classifier
weights. Once the training with one subset was completed,
the parameters and all thresholds were fixed for testing with
the other subset. The training and test subsets were switched
and the training process was repeated. The overall detection
performance was evaluated by combining the performances
for the two test subsets. The trained algorithms with the fixed
parameters were also applied to the no-mass mammograms
to estimate the FP rate in screening mammograms.

1. Preprocessing

FFDMs are generally preprocessed with proprietary meth-
ods by the manufacturer of the FFDM system before being
displayed to readers. The image preprocessing method used
depends on the manufacturer of the FFDM system. To de-
velop a CAD system that is less dependent on the FFDM
manufacturer�s proprietary preprocessing methods, we use
the raw FFDM as input to our CAD system. We developed a
multiscale preprocessing scheme for image enhancement.

Multiscale methods have been used for contrast enhance-
ment of medical images. Since a multiscale method uses the

information from a large number of frequency channels ex-
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tracted from the image adaptively, it is more flexible and
versatile than the commonly used enhancement methods,
such as unsharp masking, which uses a small number of
frequency channels. Two types of multiscale methods have
been used as the preprocessing methods for the contrast en-
hancement of mammograms: the wavelet method and the
Laplacian pyramid method.37 A previous study has shown
that, for the purpose of image enhancement, using a Laplac-

FIG. 2. Schematic diagram of our CAD system for mass detection on
FFDM. The system is developed for screening mammography so that all
masses, regardless of malignant or benign, are considered positive. The FP
classification stage includes rule-based classification, a morphological LDA
classifier, and a texture feature LDA classifier for differentiating masses

from normal breast tissues.
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ian pyramid method is advantageous compared to using the
fast wavelet transformation which introduces visible
artifacts.38 In this project, therefore, we chose the Laplacian
pyramid method as our preprocessing method.

A flowchart of our preprocessing method is shown in Fig.
3. In brief, the mammogram is first segmented automatically
into the background and the breast region. Second, a loga-
rithmic transform is applied to the breast image. The Laplac-
ian pyramid method is used to decompose the breast image

FIG. 1. The information of our mass
data set: �a� distribution of mass sizes,
�b� distribution of mass shapes, �c�
distribution of mass margins, C: cir-
cumscribed, Ind: indistinct, M: mi-
crolobulated, Ob: obscured, Sp: spiqu-
lated, �d� distribution of the breast
density in terms of BI-RADS category
estimated by a MQSA radiologist.

FIG. 3. Schematic diagram for the image preprocessing stage of our mass
detection system, which includes breast boundary segmentation, logarithmic

image transformation, and Laplacian pyramid multiscale enhancement.
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into multiscales. A nonlinear weight function based on the
pixel gray level from each of the low-pass components is
designed to enhance the high-pass components.

Since the contrast between the breast and the background
in a raw FFDM is high, a two-step algorithm was developed
for the segmentation of breast region. First, Otsu’s method39

is used to calculate a threshold and binarize the original im-
age. Second, an eight-connectivity labeling method is used to
identify the connected regions below the threshold on the
binary image. The region with the largest area will be con-
sidered to be the breast region.

Clinical mammograms are usually viewed in a negative
mode of the raw images. In order to process an image with
the same format as the clinical mammograms, we first use an
inverted logarithmic function40 to transform the raw data. A
multiresolution method is then used to enhance the log-
transformed image. The inverted logarithmic function for
signal transfer can be expressed as

Sx = ln�Xmax

X
� �1�

where X is the gray level of the raw data, Xmax is the maxi-
mum of the 14 bit digital gray scale number �i.e., 16 383�.
The transformed image is then linearly scaled to 12 bit pixel
values.

The Laplacian pyramid decomposition is a multiscale
method that was first introduced as an image compression
technique.37 We previously evaluated the effect of Laplacian
pyramid data compression on the detection of microcalcifi-
cations on digitized mammograms.41 An illustration of a La-
placian decomposition tree is shown on the left-hand side of
Fig. 4. The Laplacian pyramid is a sequence of error images
L0 ,L1 , . . . ,Ln. Each is the difference between two consecu-
tive levels of the Gaussian pyramid G0 ,G1 , . . . ,Gn, where G0

is the original image. Each subsequent level of the Gaussian
pyramid in the decomposition tree is generated by convolu-
tion of the image at the previous level with a 5�5 kernel,
w�m ,n�, that has weights of 0.4 at the center, 0.25 at the
eight nearest neighbors of the center, and 0.05 at the 16
peripheral pixels, and then downsampled by a factor of 2, as
described in Eq. �4�. The decomposition of the image from
level k to level k+1 can be expressed mathematically by

Lk = Gk − Expand�Gk+1� , �2�

where

Expand�Gk+1� = 4 �
m=−2

2

�
n=−2

2

w�m,n� · Gk+1� i − m

2
,
j − n

2
� ,

�3�

Gk�i, j� = �
m=−2

2

�
n=−2

2

w�m,n�Gk−1�2i + m,2j + n� . �4�

The original image can be recovered by following the Gauss-
ian reconstruction tree shown on the right-hand side of Fig. 4
if no enhancement is applied to the Laplacian pyramid. At a

given level of the Gaussian reconstruction tree, the image is
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expanded �convolved and upsampled�, as shown in Eq. �3�,
and then added to the Laplacian error image of the corre-
sponding level. Details of the decomposition and reconstruc-
tion processes can be found in the literature.37

We enhance the reconstructed image to facilitate mass
detection. The image at each level of the Laplacian pyramid
that corresponds to a bandpass image is mapped by a non-
linear function. In this study, we use a nonlinear function that
incorporates the information from each bandpass image. A
Gaussian pyramid expansion is then used to reconstruct the
image from the low pass components and the enhanced
bandpass components, as shown in Fig. 4. The reconstruction
scheme is defined by

r�k� = � · Expand�Gk+1� + � · �Expand�Gk+1��p · Lk, �5�

where �, �, and p are constant values in the range of 0.2–2.0
experimentally chosen for each frequency level.

Figures 5�a� and 5�b� show an example of a GE raw im-
age and its processed image provided by the GE FFDM sys-
tem. The histograms of the raw image and the processed
image are shown next to the corresponding images. An ex-
ample of the processed image using our multiresolution en-
hancement method and the corresponding histogram are
shown in Fig. 5�c�.

2. Prescreening and segmentation
of suspicious objects

In our previous CAD system developed for digitized
SFMs, an adaptive density-weighted contrast enhancement

35

FIG. 4. Multiscale enhancement using the Laplacian pyramid decomposition
method: Laplacian decomposition tree on the left-hand side and the Gauss-
ian reconstruction tree on the right-hand side. The different levels of the
Gaussian pyramid images are denoted by Gi, �i=0, . . . ,n�. The error images
at different levels of the Laplacian pyramid are denoted by Li, �i
=0, . . . ,n�. The primed quantities Gi� and Li� denoted the images at different
levels after enhancement. ∑ denotes the summation operation. The image is
downsampled by a factor of 2 when it goes down every level of the decom-
position tree, and upsampled by a factor 2 when it moves up every level of
the reconstruction tree.
�DWCE� filter was developed for prescreening. Although
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the DWCE filter using the gray level information can iden-
tify the suspicious locations of masses on mammograms with
high sensitivity, the prescreening objects often include a
large number of enhanced normal breast structures.

In this study, we investigated the use of a new method that
combines gradient field information and gray level informa-
tion to detect mass candidates on FFDMs. Gradient field in-
formation is commonly used in computer vision or other
fields to extract objects or intensity field distributions. Ko-
batake et al.42 designed a filter, referred to as an iris filter, to
calculate the convergence of gradient index around each
pixel on SFMs which provided shape information for detec-
tion of masses. An extension of the iris filter, referred to as
an adaptive ring filter, was developed by Wei et al.43 for
detection of lung nodules on chest x-ray images. In this
study, we have developed a two-stage gradient field analysis
method which uses not only the shape information of masses
on mammograms but also incorporates the gray level infor-
mation of the local object segmented by a region growing
technique in the second stage to refine the gradient field
analysis.

To reduce noise in the gradient calculation, the image is
smoothed with a 4�4 box filter and subsampled to

FIG. 5. An example of �a� GE raw image, �b� GE processed image, and �c�
our processed image by using the Laplacian pyramid multiscale method.
The gray level histogram of each image is also shown. The GE raw image
has 14 bit gray levels but the histogram only plotted the lower 12 bits be-
cause very few pixels had gray levels higher than 4095.
400 �m�400 �m. The gradient field analysis is applied to
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the smoothed image. At each pixel c�i� within the breast,
concentric annular regions centered at c�i� with an average
radius, R�k�, of k pixels from c�i� and a radial width of
4 pixels are defined within a circular region of about 12 mm
in radius. The gradient vector at each pixel p�j� within an
annular region is computed and the gradient direction is ob-
tained by projecting the gradient vector to the radial direction
vector from c�i� to p�j�. The average gradient direction over
an annular region at the average radius R�k� is calculated as
the mean of the gradient directions over pixels on three ad-
jacent annular regions R�k−1�, R�k�, and R�k+1�. Finally,
the gradient field convergence at c�i� was determined as the
maximum of the average gradient directions among all an-
nular regions. A region of interest �ROI� of 256
�256 pixels in the 100 �m�100 �m images is identified
with its center placed at each location of high gradient con-
vergence. The object in each ROI is segmented by a region
growing method44 in which the location of high gradient
convergence is used as the starting point. After region grow-
ing, all connected pixels constituting the object are labeled.
Finally, the gradient convergence at the center location of the
ROI is recalculated within the segmented object. Objects
whose new gradient convergence is lower than 80% of the
original value are rejected.

After prescreening, the suspicious objects are identified
by using a two-stage segmentation method. First, the
background-corrected ROI was weighted by a Gaussian
function with �=256 pixels. Then, a k-means clustering us-
ing the pixel values in a background-corrected image and a
Sobel filtered image as features is used to find the object.
Figures 6�a� and 6�b� show the initial detection locations and
the grown objects, respectively, obtained by prescreening the
mammogram shown in Fig. 5�c�.

3. Feature extraction and FP reduction

FP classification in our mass detection system is accom-
plished by a three-stage classification scheme.36,44 For each
suspicious object, eleven morphological features are ex-
tracted. Rule-based classification and a linear discriminant
analysis �LDA� classifier using all 11 morphological features
as input predictor variables are trained to remove the de-
tected structures that are substantially different from breast
masses. The training data set alone was used for training the
classification rules and the weights of the LDA classifier.
After morphological classification, global and local multi-
resolution texture analyses45 are performed in each remain-
ing ROI by using the spatial gray level dependence �SGLD�
matrix. Briefly, the wavelet transform is employed to decom-
pose an ROI into three levels for global texture analysis.
Thirteen types of texture features44,46 are extracted from each
ROI. Each feature is calculated at 14 pixel distances and 2
angular directions. A total of 364 features �13 texture
measures�14 distances�2 directions� is extracted from
global texture analysis. Local texture features are extracted
from the local region containing the detected object �object
region� and the peripheral regions within each ROI. A total

of 208 features �104 features from the object region and 104
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features from the peripheral regions� are extracted. The third-
stage FP reduction using the texture features is described
next.

4. Texture classification of masses
and normal tissue

In order to obtain the best texture feature subset and re-
duce the dimensionality of the feature space to design an
effective classifier, feature selection with stepwise LDA was
applied. At each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. The optimization procedure used a threshold Fin for
feature entry, a threshold Fout for feature removal, and a tol-
erance threshold T for excluding features that had high cor-
relation with the features already in the selected pool. Since
the appropriate values of Fin, Fout, and T were unknown, we
examined a range of Fin, Fout, and T values using an auto-
mated simplex optimization method. For a given combina-
tion of Fin, Fout, and T values, the algorithm used a leave-
one-case-out resampling method within the training subset to
select features and estimate the weights for the LDA classi-
fier. To evaluate the classifier performance, the test discrimi-

FIG. 6. An example demonstrating the processing steps with our CAD sys-
tem: �a� object locations identified in prescreening, �b� identified suspicious
objects, �c� detected objects after FP reduction, and �d� image superimposed
with ROIs identifying the detected objects. The true mass is indicated by an
arrow.
nant scores from the left-out cases were analyzed using re-
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ceiver operating characteristic �ROC� methodology.47 The
discriminant scores of the mass and normal tissue were used
as the decision variable in the LABROC program, which fits a
binormal ROC curve based on maximum likelihood estima-
tion. The accuracy for classification of mass and normal tis-
sue was evaluated as the area under the ROC curve, Az. The
test Az for the left-out cases in the leave-one-out resampling
within the training subset was used as a figure of merit to
guide the simplex algorithm to search for the best set of Fin,
Fout, and T values within the parameter space. In this ap-
proach, feature selection was performed without the left-out
case so that the test performance would be less optimistically
biased.48 However, the selected feature set in each leave-one-
case-out cycle could be slightly different because every cycle
had one training case different from the other cycles. In order
to obtain a single trained classifier to apply to the test subset,
a final stepwise feature selection was performed with the
entire training subset and a set of Fin, Fout, and T thresholds
chosen from the output of simplex training process. This set
of Fin, Fout, and T thresholds was chosen based not only on
the test Az values, which were generated when the simplex
procedure was searching through the parameter space, but
also on the average number of features selected. The appro-
priate thresholds were chosen as a balance between keeping
the number of selected features small and a relatively high
classification accuracy by LDA. The chosen thresholds were
then applied to the entire training subset to obtain the final
set of features using stepwise feature selection and estimate
the weights of the LDA. The LDA classifier with the selected
feature set was then fixed and applied to the test subset. The
test subset was independent of the training subset as de-
scribed in Sec. II B 2 and was not used in the above-
described leave-one-case-out classifier training process.

5. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by an experienced radiologist. A de-
tected object was scored as true positive �TP� if the overlap
between the bounding box of the detected object and the
truth ROI was over 25%. Otherwise, it would be scored as
FP. The 25% threshold was selected as described in our pre-
vious study.36 The detection performance of the CAD system
was assessed by free response ROC �FROC� analysis. FROC
curves were presented on a per-mammogram and a per-case
basis. For mammogram-based FROC analysis, the mass on
each mammogram was considered an independent true ob-
ject; the sensitivity was thus calculated relative to 220
masses. For case-based FROC analysis, the same mass im-
aged on the two-view mammograms was considered to be
one true object and detection of either or both masses on the
two views was considered to be a TP detection; the sensitiv-
ity was thus calculated relative to 110 masses. Figure 6�c�
shows an example of the final detected objects and Fig. 6�d�
shows the locations of these objects superimposed on the
mammogram.

To evaluate the effect of the preprocessing methods on

mass detection, we also trained a CAD system using the GE
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processed image as input. This CAD system used the same
methods as those described earlier for the raw images except
that the Laplacian pyramid preprocessing step was not ap-
plied to the GE processed image, and that the prescreening
and feature classifiers were retrained specifically for the GE
processed images to obtain the best performance. The train-
ing and test subsets contained the same corresponding cases
as for the raw image subsets. The training and testing were
performed using the above-described cross validation
method. The performance of the CAD system using the GE
processed images was quantified by the average test FROC
curve and compared with that using the raw images.

III. RESULTS

With raw images as input and Laplacian pyramid en-
hancement, our CAD system using the two-stage gradient
field analysis detected 92.7% �204/220� of the masses with
an average of 18.9 �4152/220� objects/image at the pre-
screening stage, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone. After FP reduction using the rule-based and
linear classifier based on morphological features, there were
a total of 3412 mass candidates �15.5 objects/image� at a
sensitivity of 90.5% �199/220�.

The texture-based LDA classifier for FP reduction was
designed with stepwise feature selection and simplex optimi-
zation. The most effective subset of features from the avail-
able feature pool was selected for each of the training subsets
during the training procedure. Twenty �11 global and 9 local�
and 19 �12 global and 7 local� texture features were selected
from the two independent training subsets, respectively. The
test ROC curves are shown in Fig. 7. The training Az values
of the LDA classifier on the two training subsets were
0.87±0.02 and 0.88±0.01, respectively. The classifiers
achieved Az values of 0.89±0.02 and 0.85±0.02 on the in-
dependent test subsets, respectively. Figure 8 shows the
FROC curves for the two test subsets after FP reduction with
the corresponding trained LDA classifiers. An average FROC

FIG. 7. The test ROC curves from the two independent mass subsets. The
LDA classifiers using text features achieved an Az value of 0.89±0.02 for
test subset 1 and 0.85±0.02 for test subset 2 in the classification of mass and
normal breast tissues.
curve was derived from these two FROC curves by averag-
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ing the FP/images at the corresponding sensitivities. This
average test FROC curve is plotted in Fig. 9 for comparison
with the other FROC curves, described next.

In addition to using the mass data set containing 110 cases
for the cross validation training and testing, we used a no-
mass data set containing 90 cases with 180 images to evalu-
ate the FP detection rate in normal cases. Since two sets of
trained parameters were acquired as a result of the cross
validation training, we applied the two trained CAD systems
separately to the no-mass data set for FP detection. The num-
ber of FP marks produced by the algorithm was determined
by counting the detected objects on these normal cases only.
The mass detection sensitivity was determined by counting
only the abnormal objects on each of the test mass subsets.
The combination of the sensitivity from each of the test mass
subsets and the FP rate from the normal data set at the cor-
responding detection thresholds resulted in a test FROC
curve. The two test FROC curves were then averaged, as
described earlier, to obtain an overall FROC curve quantify-
ing the test performance of the CAD system. Figures 9�a�
and 9�b� show the comparison of the average FROC curves
with the FP rates estimated from the two data sets. The test
FROC curve with the FP rate estimated from the no-mass

FIG. 8. The test FROC curves from the two independent mass subsets for
the CAD system using the raw images as input and processed with the
Laplacian pyramid method. The FP rate was estimated from the mammo-
grams with masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
data set showed a case-based detection sensitivity of 70%,
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80%, and 90% at 0.85, 1.31, and 2.14 FP marks/image,
which are slightly higher than the FP rates of 0.7, 1.1, and
1.8 marks/image, respectively, estimated from the mass data
set. Since our mass detection algorithm limits the maximum
number of output marks to be 3 at the final stage, the FP
marker rates will be slightly higher if the detection is per-
formed in no-mass images. However, many images do not
reach the maximum of 3 marks so that the difference in the
FP marker rate between the mass and no-mass set is less than
one. We also analyzed the detection accuracy of the system
for malignant and benign masses separately. Figures 10�a�
and 10�b� show the average FROC curves for detection of
malignant and benign masses.

The average test FROC curves of the CAD system using
the GE processed images as input were compared to those of
the CAD system using raw images as input and Laplacian
pyramid multiscale preprocessing as shown in Fig. 9. The
FROC curves were plotted as the detection sensitivity as a
function of the number of FP marks per image on the mass
data set. The CAD system using the GE processed images as

FIG. 9. Comparison of the average test FROC curves obtained from: �1� the
CAD system using raw images as input, with the FP rate estimated from the
mammograms with masses, �2� the CAD system using raw images as input,
with the FP rate estimated from the normal mammograms without masses,
and �3� the CAD system using GE processed images as input, with the FP
rate estimated from the GE processed mammograms with masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
input achieved a case-based sensitivity of 70%, 80%, and
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90% at 0.9, 1.6, and 3.1 FP marks/image, respectively, com-
pared with 0.7, 1.1, and 1.8 FP marks/image on the CAD
system using raw images as input.

IV. DISCUSSION

Several FFDM systems have been approved for clinical
applications. It is important to develop a CAD system that
can easily be adapted to images acquired by FFDM systems
from different manufacturers. In this study, we are develop-
ing a CAD system that uses the raw FFDMs as the input.
Since digital detectors generally have a linear response to
x-ray exposure, the raw pixel values are a linear function of
the absorbed x-ray energy in the detector. The signal range
between different digital detectors can therefore be normal-
ized linearly with respect to each other. Although the spatial
resolution and noise properties of the images from different
detectors are still different, the use of raw images already
reduces one of the major differences between mammograms
from different FFDM systems. For preprocessing of the raw
images, we developed a multiresolution enhancement
method. An example of a typical mammogram processed by
the GE method and our method is compared in Fig. 5. As
seen from this example, the enhancement of mammographic

FIG. 10. Comparison of the average test FROC curves for the malignant and
benign mass sets. The CAD system using raw images as input was used and
the FP rate was estimated from the mammograms without masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
structures was stronger for our processed image than for the
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GE processed image. From a comparison of their histograms,
it was found that the two histograms are very similar except
for the average gray level.

For the evaluation of the effect of the preprocessing meth-
ods on computerized mass detection, we observed that our
Laplacian pyramid preprocessing method provided higher
detection accuracy than the GE processing method. As
shown in Fig. 5, the Laplacian pyramid preprocessing
method applies a stronger edge enhancement to the image
than the GE method. Our preprocessing method aims at en-
hancing the image structures for computer vision whereas
the GE processing method was designed to enhance the im-
age for human visual interpretation. The stronger enhance-
ment used for preprocessing the raw images appeared to im-
prove the accuracy of the computer in detecting the masses.

Currently, there is no established statistical analysis
method for testing the significance of the difference between
two FROC curves generated by a CAD system. Chakraborty
et al. proposed using an alternative free-response ROC
�AFROC� method49 to transform the FROC data to AFROC
data, to which the curve fitting software and statistical sig-
nificance tests for ROC analysis can then be applied and
demonstrated its application to human observer performance
rating data. In the AFROC method, false-positive images
�FPIs� instead of FPs per image are counted. The confidence
rating of a FPI is determined by the highest confidence FP
decision on the image regardless of how many lower confi-
dence FP decisions are made on the same image. We applied
the AFROC method to evaluate the differences in pairs of
our FROC curves that used the no-mass set for estimation of
the FP rates. The ROCKIT software developed by Metz et al.47

was used to analyze the AFROC data. The comparison of A1

and p values is summarized in Table I. The area under the
fitted AFROC curve �A1� was 0.44 and 0.39, respectively, on
mass test subsets 1 and 2 for the CAD system using raw
images as input and processed with our Laplacian pyramid
method, and 0.37 and 0.31, respectively, on the same subsets
for the CAD system using GE processed images as input.
The difference between the fitted AFROC curve for our pro-
cessed images and that for the GE processed images was
statistically significant �p�0.05� for both test subsets. How-
ever, all four fitted AFROC curves deviated systematically
from the AFROC data �see two examples plotted in Fig. 11

TABLE I. Estimation of the statistical significance in th
system using the FFDM raw images as input and pro
CAD system using GE processed images as input.
no-mass data set �Fig. 9� were compared.

A1 �AFROC

Test
subset 1

Test
subset 2

Raw+LP processed 0.44 0.39
GE processed 0.37 0.31
for the test subset 1�. It is uncertain whether the AFROC
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method is applicable to our FROC data and thus whether the
statistical significance testing is valid.

More recently, Chakraborty et al.50 proposed a JAFROC
method and provided software to estimate the statistical sig-
nificance of the difference between two FROC curves. We
also applied the JAFROC analysis to the two pairs of FROC
curves. The figure-of-merit �FOM� from the output of the
JAFROC software was 0.46 and 0.41, respectively, on mass
test subsets 1 and 2 for the CAD system using raw images as
input and processed with our Laplacian pyramid method, and
0.39 and 0.34, respectively, on the same subsets for the CAD
system using GE processed images as input. The difference
between the FOM for our processed images and that for the
GE processed images was again statistically significant �p
�0.05�. The FOM values were about 0.02 higher than the
corresponding A1 values. The JAFROC software did not pro-
vide a fitted curve or a goodness-of-fit indicator in the output
so that it is not known whether this model fits our FROC
data better than the AFRPC method. Although both methods
indicate that the improvement in the FROC performance us-
ing our Laplacian pyramid processed images is statistically

ference between the FROC performance of the CAD
with our Laplacian pyramid method and that of the

FROC curves with the FP rates obtained from the

FOM �JAFROC�

p
values

Test
subset 1

Test
subset 2

p
values

0.012 0.46 0.41 0.006
0.0009 0.39 0.34 0.012

FIG. 11. Comparison of alternative free-response receiver operating charac-
teristic �AFROC� curves. The raw curves were transformed from the FROC
curves of mass detection on test subset 1 using either the raw images as
input and processed with the Laplacian pyramid method �LP� or the GE
processed images as input. The FP rate was estimated from the mammo-
grams without masses. The fitted AFROC curves were obtained by applying
e dif
cessed
The

�

the ROCKIT program to the transformed AFROC data.
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significant, further investigations are needed to study
whether these models are valid for analyzing the FROC per-
formance of CAD systems.

The prescreening technique is an important task in a CAD
system. A number of researchers have developed methods for
detection of suspicious masses on SFMs and CRs. The pre-
vious methods produced between 10 to 30 FPs/image for a
mass detection sensitivity of approximately 90%. However,
it is difficult to compare the effectiveness of the different
methods because of the differences in the image recording
systems and in the data sets. In this study, we developed a
new method that combines gradient field information, which
was originally developed for the detection of lung nodules on
chest x-ray images,43 and gray level information44 for pre-
screening mass candidates on the FFDMs. The new method
produced 18.9 objects/image at 93% sensitivity in the pre-
screening step, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone.

The texture features in this study were extracted by using
the SGLD matrix. A total of 572 features were included in
our initial feature pool. These features were also used by our
CAD system previously developed for SFMs. An average
number of 19.5 features were selected by using a stepwise
feature selection method. The Az values for the LDA classi-
fiers were 0.87±0.02 and 0.88±0.01 on the two training sub-
sets, and 0.89±0.02 and 0.85±0.02 on the test subsets, re-
spectively. The slightly higher test Az from the first test
subset than the Az from its training subset may indicate that
some relatively easy cases were assigned, by chance, to that
test set during random partitioning. We also investigated if
other features could improve the performance of our CAD
system. The different feature spaces that we examined in-
cluded features extracted from principal component analysis
applied to the ROI image, run length statistics texture fea-
tures extracted from the ROI images, and combination of one
or both of these feature spaces with the SGLD feature space.
However, the test results showed that a LDA classifier de-
signed in the SGLD feature space alone provided the best
performance. Although this was found to be true for both our
CAD mass detection system for SFMs developed previously
and the current system for FFDMs, it is still difficult to con-
clude that the SGLD features are the best feature set for
classification between breast masses and normal tissues. One
major concern of the SGLD feature space is that the depen-
dence of the feature values on the pixel pair distance and
angular direction leads to a feature pool with a large number
of features. Some features in such a large feature space may
provide good performance in classification of masses and
normal structures by chance. We attempted to alleviate this
problem by using an independent test set to evaluate the
classifier performance. However, since we chose the overall
system parameters with the knowledge of the performance
for the test sets, the evaluation would still amount to valida-
tion rather than true testing. We have verified that our CAD
system for SFMs can achieve reasonable performance in a

36
true independent data set and a prospective pilot clinical
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trial.16 The performance of the current CAD system for
FFDMs will have to be evaluated similarly when indepen-
dent data sets become available.

The detection performance of a CAD system for malig-
nant masses is more important than its performance for all
masses. Figures 10�a� and 10�b� indicate that the sensitivity
of the system is higher for malignant masses than for benign
masses. This is consistent with our observation in previous
studies of our CAD system for digitized SFMs.36 However,
since our current data set contained only 23 malignant cases,
there will be large statistical uncertainty in the evaluation of
sensitivity in this subset. A larger data set is being collected
for comparing the detection performances of the CAD sys-
tem between malignant and benign masses and also for the
purpose of classifying malignant and benign masses. Further-
more, CAD algorithms developed for SFMs have been
proven to be useful as a second opinion to assist radiologists
in mammographic interpretation. Because of the higher SNR
and linear response of digital detectors, there is also a poten-
tial that FFDMs can improve the sensitivity of breast cancer
detection, especially in dense breasts. Several studies have
been or are being conducted to compare FFDM with SFM in
screening cohorts. It is also important to compare the perfor-
mance of CAD systems between FFDMs and SFMs. A study
is under way to compare the performance of the two systems
on pairs of FFDM and SFM obtained from the same
patients.51

V. CONCLUSION

Several FFDM systems have been approved for clinical
applications. It is important to develop CAD systems for
breast cancer detection in FFDM. In this work, we developed
a CAD system that uses the raw FFDMs as the input. A
multiresolution Laplacian pyramid enhancement method was
devised to preprocess the raw FFDMs. A new prescreening
method that combined gradient field analysis with gray level
information was developed to identify mass candidates.
Rule-based and LDA classifiers in a feature space which con-
sisted of morphological features and SGLD texture features
were designed to differentiate masses from normal tissues. It
was found that our CAD system achieved a case-based sen-
sitivity of 70%, 80%, and 90% with an estimate of 0.85,
1.31, and 2.14 FP marks/image, respectively, on normal
cases. The results indicate that our mass detection CAD
scheme can be useful for detecting masses on FFDMs. Stud-
ies are under way to further optimize the processing param-
eters, the feature extraction, and the classifiers for FP reduc-
tion. Comparison of mass detection performance of our CAD
system for FFDMs and that for SFMs is also in progress.
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Abstract 

In this study, our purpose was to improve the performance of our mass detection 

system by using a new dual system approach which combines a CAD system optimized 

with ”average” masses with another CAD system optimized with “subtle” masses.  The 

two single CAD systems have similar image processing steps, which include 

prescreening, object segmentation, morphological and texture feature extraction, and  

false positive (FP) reduction by rule-based and linear discriminant analysis (LDA) 

classifiers.  Stepwise feature selection with simplex optimization was applied to each of 

the single CAD systems during the training.  A feed-forward backpropagation artificial 

neural network (BP-ANN) was trained to merge the scores from the LDA classifiers in 

the two single CAD systems and differentiate true masses from normal tissue.  For an 

unknown test mammogram, the two single CAD systems are applied to the image in 

parallel to detect suspicious objects.    A total of three data sets were used for training and 

testing the systems.  The first data set of 230 current mammograms, referred as the 

average data set, was collected from 115 patients.  We also collected 264 mammograms, 

referred as the subtle data set, which were one to two years prior to the current exam from 

these patients.  Both the average and the subtle data sets were partitioned into two 

independent data sets in a cross validation training and testing scheme.  A third data set 
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containing 65 cases with 260 normal mammograms was used to estimate the false 

positive (FP) marker rates during testing.  The detection performance of the CAD system 

was assessed by free response receiver operating characteristic (FROC) analysis.  When 

the single CAD system trained on the average data set was applied to the test set, the FP 

marker rates were 2.2, 1.8 and 1.5 per image at the case-based sensitivities of 90%, 85% 

and 80%, respectively.  With the dual CAD system, the FP marker rates were improved 

to 1.2, 0.9 and 0.7 per image, respectively, at the same case-based sensitivities.  Our 

results indicate that the dual CAD system approach can improve significantly (p<0.05) 

the performance of mass detection on mammograms compared to that obtained by 

training a single CAD system with the average masses alone or with both the average and 

the subtle masses. 

 

Keywords:  computer-aided detection (CAD),  mass detection,  mammogram,  dual 

system,  artificial neural network (ANN)
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I.  INTRODUCTION 

Breast cancer is one of the leading causes of cancer mortality among women1. It 

has been reported that early diagnosis and treatment can significantly improve the chance 

of survival for patients with breast cancer2-4.  At present, the most successful method for 

the early detection of breast cancer is screening mammography5.  Various methods are 

being developed to improve the accuracy of breast cancer detection.  Double reading by 

radiologists can reduce the miss rate of radiographic reading.  However, double reading 

will increase the cost of mammographic screening.  An alternative method is to use a 

trained computer-aided detection (CAD) system as a second reader6,7.  Recent clinical 

studies have shown that CAD systems are helpful for increasing radiologists’ accuracy in 

detecting breast cancers8-13.  

A large volume of literature has been published in the CAD area.  CAD systems 

for mammography generally consist of two subsystems: one is a mass detection system 

and the other is a microcalcification detection system.  Detection of masses on 

mammograms is often more challenging than detection of microcalcifications.  The mass 

detection systems to-date employed a single-system approach using various techniques 

for prescreening of mass candidates and classification of true and false positives14-24.  Our 

laboratory incorporated two-view mammographic information for improved 
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differentiation of true masses and false positives and obtained promising preliminary 

results.22  However, development of new methods to improve the performance of mass 

detection systems remains an important area of CAD research. 

The CAD systems developed so far mostly used masses seen on current 

mammograms (i.e., the mammograms on which the masses were detected by radiologists) 

for training.  An important purpose of a CAD system is that it is used as a second reader 

to alert radiologists to subtle cancers that may be overlooked.  To study the ability of a 

CAD system in detecting subtle cancers that are likely to be missed by radiologists, one 

way is to evaluate its accuracy in detecting missed cancers on prior mammograms (i.e., 

the mammograms in previous examinations on which the mass or cancer can be seen 

retrospectively but was considered negative or benign at the time of the examination).  

Some researchers have investigated the performance change of CAD systems when using 

prior mammograms as input.  In our study of mass detection on prior mammograms25, we 

obtained a case-based sensitivity of 74% (20/27) of the malignant masses with 2.2 false 

positives (FPs) per image.  te Brake et al26 reported that their CAD system has a case-

based sensitivity of 34% (22/65) of the cancers which have the appearance of masses or 

stellate lesions in the prior examinations with 1 FP per image.  A commercial system (R2 

ImageChecker) also reported detection of 42% (72/172) of the cancers in the prior years 
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which were considered worthy of call-back in retrospect by expert mammographers with 

about 2 FP marks/case27.  Zheng et al.23 reported that their CAD system trained with 

current mammograms could not perform optimally in prior mammograms and vice versa; 

whereas the same system trained with prior mammograms can perform better on 

detecting the masses on prior mammograms.  Recently, an assessment study28 was 

conducted to compare the performance of two commercial systems and one research 

CAD system on current mammograms and prior mammograms.  The results showed that 

the true positive (TP) fraction for CAD systems on prior mammograms of 39 breasts with 

malignant masses ranged from 15% to 26% with 0.28 to 0.41 FP marks/image.  Although 

the detection performance reported in the different studies vary, probably due to the 

differences in the data set used, these studies indicate that the sensitivity of current CAD 

systems in detecting subtle masses on prior mammograms are substantially lower than 

those obtained from detection on current mammograms.  The difficulty in recognizing the 

subtle and possibly different features of the masses on priors compared to those of the 

masses on current mammograms may be one of the factors that causes oversight for both 

radiologists and the CAD systems. 

The goal of pattern recognition is to achieve the best possible classification 

performance in the task at hand.  Researchers had shown that, for a class of objects with a 
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wide range of characteristics, the classification performance can be improved by using 

combination of classifiers whereby objects of certain characteristics are classified by one 

classifier using a set of features and objects of different characteristics by another 

classification scheme based on different features29-35.  The advantage of using combination 

of classifiers  is that it may stabilize the training of classifiers even with a relatively small 

sample size because each classifier does not have to accommodate a wide range of 

characteristics and features36,37.  These observations motivated our interest in the design of 

a dual CAD system for mass detection.   

Since the missed cancers on prior mammograms represent the difficult cases that 

are more likely to be missed by radiologists if similar cancers occur on screening 

mammograms, it is important to improve the sensitivity of the CAD system in detecting 

these cancers.  On the other hand, when a CAD system is applied to a new mammogram 

in clinical practice, it has to detect breast lesions of all degrees of subtlety effectively.  

However, it is difficult to train a single CAD system to provide optimal detection for all 

lesions over the entire spectrum of subtlety because the classifiers have to make 

compromises to accommodate cancers of a wide range of characteristics.  Therefore, we 

have been exploring a new dual CAD system approach that combines a CAD system 

trained with retrospectively seen masses on prior mammograms with a CAD system 
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trained with masses detected on current mammograms38,39.  In this paper, we will describe 

the design of the dual CAD system and report our current results.   

 

II. MATERIALS AND METHOD 

2.1 Data Sets 

All mammograms in this study were collected from patient files in the 

Department of Radiology at the University of Michigan with Institutional Review Board 

(IRB) approval.  The mammograms were digitized with a LUMISYS 85 laser film 

scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was 

calibrated to have a linear relationship between gray levels and optical densities (O.D.) 

from 0.1 to greater than 3 O.D. units.  The nominal O.D. range of the scanner is 0–4.  The 

full resolution mammograms were first smoothed with a 2×2 box filter and subsampled 

by a factor of 2, resulting in 100µm×100µm images.  The images at a pixel size of 

100µm×100µm were used for the input of our CAD system. 

We collected three data sets.  The first data set contained 115 cases with 

confirmed masses.  Each case included the current mammograms that prompted the 

radiologist to work up the mass.  This is referred to as the “average” mass set.  All of the 

cases in the average mass set had two mammographic views: the craniocaudal (CC) view 
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and the mediolateral oblique (MLO) view or the lateral view, thus yielding a total of 230 

mammograms.  There were 115 masses (67 malignant masses and 48 benign masses) in 

this data set, of which 105 were biopsy-proven and 10 were determined to be benign by 

long-term follow-up.   

The second data set was composed of the prior mammograms dated one to two 

years earlier than the mammograms of the same patients in the average mass set. Since 

the masses on prior mammograms are on average subtler than those on current 

mammograms, this data set is referred to as the “subtle” mass set.  On five of the 115 

patients, no mass or focal density could be identified on either view of the prior 

mammograms.  Therefore, the subtle mass set was composed of 110 cases (62 malignant 

and 48 benign).  For the purpose of training the subtle mass detection system, the subtle 

masses do not have to be obtained from the same cases as the average mass set but we 

used the available prior mammograms for these mass cases in our database.  Nineteen of 

the 110 cases had two prior mammogram examinations.  Of the 129 examinations in the 

subtle mass set, 123 had two mammographic views and 6 had three views, with a total of 

264 mammograms.  Many of the subtle masses on the prior mammograms could be 

identified only as a focal density corresponding to the location of the subsequently 

detected mass on the current mammograms.  On 44 of the two-view prior mammograms, 
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the mass location was evident only on one view.  Table I summarizes the information for 

the average and subtle mass subsets.   

The third data set was composed of 260 normal bilateral two-view mammograms 

obtained from 65 patients.  No masses were evident on these mammograms upon review 

by the experienced radiologist. 

The two mass data sets were used to estimate the detection sensitivity and the 

normal data set was used for estimating the FP marker rate.  For the mass data sets, the 

true locations of the masses were identified by an experienced MQSA radiologist using 

all available imaging and clinical information.  The radiologist also provided an estimate 

of the longest diameter of the mass, descriptors of its margin and shape, a visibility rating, 

and an estimate of the breast density in terms of BI-RADS category.   Figure 1 shows the 

distributions of mass sizes, mass shapes, mass margins, and their visibility on a 10-point 

rating scale with 1 representing the most visible masses and 10 the most difficult case 

relative to the cases seen in their clinical practice.  The masses had a mean of 13.7 mm 

and a median of 12 mm in the average data set and a mean of 9.7 mm and a median of 10 

mm in the subtle data set.  Figure 2 shows the breast density for both the normal data set 

and the mass data sets.  As can be seen from the distributions of the mass characteristics, 

the average masses on the current mammograms and the subtle masses on the priors had 
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large overlap.  Nevertheless, on average, the subtle masses were smaller in size and less 

conspicuous on the mammograms.   

 

2.2 Methods 

In order to improve the sensitivity of detecting breast lesions of all degrees of 

subtlety, we developed a new dual system approach which combines a system trained 

with average masses with another system trained with subtle masses.  When the trained 

dual system is applied to an unknown mammogram, the two CAD systems are used in 

parallel to detect suspicious objects on a single mammogram.  No prior mammogram is 

needed.  The additional FPs from the use of the two systems are reduced by an 

information fusion stage.  We will refer to the two systems separately trained with the 

average masses and the subtle masses as “single” CAD systems in the following 

discussions. 

We randomly separated the mass data sets by case into two independent subsets. 

Both the average and subtle mass subsets followed the same case grouping so that 

mammograms from the same case would not be separated into the training subset for one 

single CAD system and the test subset for the other single CAD system in a cross-
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validation cycle. Table I shows the subsets of cases in the average and subtle mass data 

sets. Two-fold cross validation was used for training and testing the algorithms.  The 

training included selecting proper parameters for each single CAD system and for 

information fusion.  Once the training with one mass subset was completed, the 

parameters were fixed for testing with the other mass subset.  The training and test mass 

subsets were switched and the training and test processes were repeated.  The CAD 

systems were trained with single mammograms.  To maximize the number of training 

images with masses, all images with a visible mass were included regardless of whether 

they were a part of a two-view or three-view case when the subtle mass subset was used 

as a training set.  However, when the subtle mass subset was used as a test set, only two 

views were included for each case because we used two-view mammograms to derive the 

case-based test performance.  For cases containing three views, we therefore included 

only two of the views in testing.  We also included cases with the mass visible on only 

one of the two views.  After the two-fold cross validation testing, the overall detection 

performance was evaluated by combining the performances of the two test subsets.  The 

trained algorithms with the fixed parameters were also applied to the normal set of 

mammograms, which was not used during training, to estimate the FP rate in screening 

mammograms.  
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2.2.1 Single CAD system overview 

The major steps in the two single mass detection systems are similar but the 

feature spaces and classifiers for FP reduction in each system were designed separately to 

suit the characteristics of average and subtle masses, respectively.  The two systems are 

therefore described together below but the differences will be pointed out whenever 

applicable. Each single CAD system consists of four processing steps: (1) pre-screening 

of mass candidates, (2) segmentation of suspicious objects, (3) feature extraction and 

analysis, and (4) FP reduction by classification of normal tissue structures and masses.  

The block diagram for the detection scheme is shown in Figure 3.  

For the pre-screening stage, we have developed a two-stage gradient field 

analysis method which not only uses the shape information of masses on mammograms 

but also incorporates the gray level information of the local object segmented by a region 

growing technique in the second stage to refine the gradient field analysis24,40. Locations 

of high radial gradient convergence are labeled as mass candidates. After prescreening, 

the suspicious objects are identified by using a two-stage segmentation method41.  First, 

the background-corrected ROI is weighted by a Gaussian function with σ=256 pixels.  

Then, a k-means clustering using the pixel values in a background-corrected image and a 
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Sobel filtered image as features is used to segment the object.  For each suspicious object, 

eleven morphological features21 were extracted.  Rule-based and linear discriminant 

classifiers were trained by using the training data set only to remove the detected 

structures that were substantially different from breast masses.  For the system trained 

with average masses, global and local multi-resolution texture analysis42 were performed 

in each ROI by using the spatial gray level dependence (SGLD) matrices.   A total of 364 

features were extracted from global texture analysis.  Local texture features were 

extracted from the local region containing the detected object and the peripheral regions 

within each ROI.  A total of 208 features were extracted for local texture analysis.  For 

the system trained with subtle masses, instead of the SGLD texture features, gray level 

features and run length statistics analysis (RLS) texture features43 were extracted inside 

and outside of each mass region on the original image and gradient field image.  The gray 

level features included the contrast of the object relative to the surrounding background, 

the minimum and the maximum gray levels, and the characteristics derived from the gray 

level histogram in the regions inside and outside of each object including skewness, 

kurtosis, energy, and entropy.  Five RLS texture features were extracted in both the 

horizontal and vertical directions: short runs emphasis, long runs emphasis, gray level 

nonuniformity, run length nonuniformity and run percentage.  A total of 66 features were 
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extracted for the system trained with subtle masses. 

In order to obtain the best texture feature subset and also reduce the 

dimensionality of the feature space to design an effective classifier, stepwise feature 

selection with linear discriminant analysis (LDA) was applied to the training subset.  The 

detailed procedure has been described elsewhere24,44,45.  Briefly, at each step one feature 

was entered or removed from the feature pool by analyzing its effect on the selection 

criterion, which was chosen to be the Wilks' lambda in this study.  Since the appropriate 

values of thresholds for feature entry, feature elimination, and tolerance of correlation for 

feature selection were unknown, we used an automated simplex optimization method to 

search for the best combination of thresholds in the parameter space.  The simplex 

algorithm used a leave-one-case-out resampling method within the training subset to 

select features and estimate the weights for the LDA classifier.  To have a figure-of-merit 

to guide feature selection, the test discriminant scores from the left-out cases were 

analyzed using receiver operating characteristic (ROC) methodology46.  The accuracy for 

classification of masses and FPs was evaluated as the area under the ROC curve, Az.  In 

this approach, feature selection was performed without the left-out case so that the test 

performance would be less optimistically biased47.  However, the selected feature set in 

each leave-one-case-out cycle could be slightly different because every cycle had one 
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training case different from the other cycles.  In order to obtain a single trained classifier 

to apply to the independent test subset, a final stepwise feature selection was performed 

with the best combination of thresholds, found in the simplex optimization procedure, on 

the entire training subset to obtain the final set of features and estimate the weights of the 

LDA.  Note that the entire process of feature selection and classifier weight estimation 

was performed within the training subset.  The LDA classifier with the selected feature 

set was then fixed and applied to the independent test subset.  The training and testing 

processes were performed independently for the two-fold cross-validation sets.   

2.2.2 Training and test for dual system 

The block diagram for the dual system is shown in Figure 4.    During the training 

of the dual system, we used the current and prior mammograms from the same patients.  

The current mammograms that contained the average masses were only used to train the 

first single CAD system.  The prior mammograms that contained the subtle masses were 

only used to train the second single CAD system.  The prescreening and the segmentation 

steps in the two systems are identical. Since the morphological appearances of average 

and subtle masses are different, the rules in the morphological rule-based FP 

classification are trained differently for the two single CAD systems.  During testing with 

an independent mammogram, the dual system keeps all the suspicious objects that satisfy 
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the FP classification rules of either single CAD system and applies the LDA classifiers 

from both single systems to each object.  Each object thus has two LDA scores. 

To merge the information from the two CAD systems, a fusion scheme was 

developed for our dual system.  In this study, a feed-forward backpropagation artificial 

neural network (BP-ANN) was trained to classify the masses from normal tissues by 

combining the output information from the two single CAD systems.  The LDA 

classifiers from the two single CAD systems were applied to each detected object .  The 

two LDA discriminant scores for each object were used as input to the BP-ANN.  The 

BP-ANN had an input layer with two nodes, a hidden layer with N nodes, and an output 

layer with one node.  The nodes were interconnected by weights and information 

propagated from one layer to the next through a log-sigmoidal activation function.  The 

learning of the ANN was a supervised process in which known training cases were input 

to the ANN.  The performance function for the network was the mean-squared error 

between the network outputs and the target outputs.  The weights of the network were 

adjusted iteratively by a feedforward backpropagation procedure to minimize the error.  

Detailed description of the backpropagation neural network can be found in the 

literature48,49. 
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To choose the number of hidden nodes (N) in the BP-ANN, we used a 3-fold 

cross-validation method within the training subset.  We randomly separated the entire 

training subset including all detected objects into three independent groups.  The objects 

belonging to the same case were separated into the same group.  For a given N, three 

training cycles were performed, in each of which two of the three groups were used to 

train the BP-ANN and the left-out group was used to test its performance.  The Az value 

obtained from the ANN output scores for the test group was used as the performance 

index for that training cycle.  The average of the Az values from the three test groups 

represented the performance of the BP-ANN with N hidden nodes. In our experiment, a 

BP-ANN with 3 hidden nodes provided the largest average Az value and was therefore 

chosen.  The weights of the chosen BP-ANN were retrained with the entire training 

subset. The BP-ANN with the trained weights was used to merge the information from 

the two single CAD systems.  

To test the dual system, the two trained single CAD systems, one trained with the 

average mass set and the other with the subtle mass set, were applied in parallel to each 

single “unknown” mammogram in the independent test subset.  No prior mammogram 

was needed during testing.   
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2.2.3 Evaluation methods 

The detected individual objects were compared with the “truth” ROI marked by 

the experienced radiologist, as described above.  A detected object was scored as TP if 

the overlap between the bounding box of the detected object and the bounding box of the 

true mass relative to the larger of the two bounding boxes was over 25%.  Otherwise, it 

would be scored as FP.  The 25% threshold was selected as described in our previous 

study21.    

 The FP marker rate was estimated in two ways: one from detection on the same 

test subsets with masses, the other from detection on the normal data set of negative 

mammograms.  For the latter, we applied the trained dual CAD system to the normal data 

set.  The number of FP marks produced by the CAD system was determined by counting 

the detected objects on the normal cases.  The mass detection sensitivity was determined 

by counting the detected masses on the test mass subset.  The detection performance of 

the CAD system was assessed by free response ROC (FROC) analysis.  An FROC curve 

was obtained by plotting the mass detection sensitivity as a function of FP marks per 

image either obtained from the mass data subset or the normal set at the corresponding 
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decision threshold.   

FROC curves were presented on a per-mammogram and a per-case basis.  For 

image-based FROC analysis, the mass on each mammogram was considered an 

independent true object.  For case-based FROC analysis, the same mass imaged on the 

two-view mammograms was considered to be one true object and detection of either or 

both masses on the two views was considered to be a TP detection.  

Since we used two-fold cross validation method for training and testing, we 

obtained two test FROC curves, one for each test subset, for each of the conditions (e.g., 

single CAD system approach or dual system approach).  To summarize the results for 

comparison, an average test FROC curve was derived by averaging the FP rates at the 

same sensitivity along the FROC curves of the two corresponding test subsets.   

In order to compare the performance of the single CAD system and the dual 

CAD system, we applied the alternative free-response ROC (AFROC) method and the 

jackknife free-response ROC (JAFROC) method developed by Chakraborty et al.50,51 to 

the pairs of FROC curves.  In the AFROC method, the FROC data are first transformed 

by counting the number of false-positive images (FPI) instead of the FPs per image.  The 

confidence rating of an FPI is determined by the highest confidence FP decision on the 

image regardless of how many lower confidence FP decisions are made on the same 



 21 

image.  The ROCKIT curve fitting software and statistical significance tests for ROC 

analysis developed by Metz et al.46 can then be used to analyze the AFROC data.   

 

III.  RESULTS 

Figure 5 shows an example of the 2-dimensional feature space that was used as 

the input to the BP-ANN being trained to merge the information from the two single 

CAD subsystems.  The two features are the output scores of the LDA classifiers trained 

with the average masses and with the subtle masses.  The correlation coefficients of the 

two features are 0.46 and 0.44 for each of the training subsets, respectively.  The low 

correlation indicated that the two single CAD systems extracted relatively independent 

features from the object.  The validation Az values of the chosen ANN on the two training 

subsets were 0.92±0.01 and 0.87±0.01, respectively. The ANN classifiers achieved Az 

values of 0.90±0.02 and 0.89±0.01 on the two independent test subsets, respectively.  

Figure 6 shows the ROC curves for the two test subsets. 

In order to evaluate the effectiveness of our dual system approach, we compared 

its performance on the test subsets containing average masses with two other single CAD 

systems: the CAD system trained only on the average mass set and the CAD system 

trained on both the average and the subtle mass sets.   When a single CAD system was 
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trained only with the average masses, the number of selected features was 21 (14 global 

and 7 local) and 16 (10 global and 6 local) texture features for the two independent 

training subsets, respectively.  When the CAD system was trained with both the average 

and the subtle masses, the number of selected features was 17 (11 global and 6 local) and 

18 (7 global and 11 local) texture features for the two independent training subsets, 

respectively.   

For the dual system, the single system trained with the average masses was the 

same as that described above.  For the single system trained with subtle masses, four (2 

gray level and 2 RLS texture) and five (3 gray level and 2 RLS texture) features were 

selected for the two independent training subsets, respectively. 

The average test FROC curves of the dual CAD system on the test subsets with 

average masses were compared to those of the single CAD systems in Figure 7.  The FP 

rates were estimated from the mass data set.  The dual CAD system achieved a case-

based sensitivity of 80%, 85%, and 90% at 0.6, 0.8, and 1.0 FPs/image, respectively, 

compared with 1.3, 1.5, and 1.8 FPs/image on the single CAD system trained with 

average masses alone.  The performance of the single CAD system trained with both the 

average masses and the subtle masses was comparable to that trained with average 

masses alone, with FP rates of 1.4, 1.6, and 1.8 FPs/image at the same sensitivities, 



 23 

respectively.  Figure 8 shows the comparison of the three average test FROC curves, 

similar to those shown in Figure 7, except that the FP rates were estimated from the 

normal data set.  The FP rates at a few selected sensitivities for the dual and single CAD 

systems were summarized in Table II.  

In this study, we have 67 malignant cases in the average mass set.  Figure 9 

compares the average test FROC curves of the single CAD system and the dual system 

for detection of malignant masses.  The result for the single CAD system trained with 

average masses was shown and the FP rate was estimated from the mammograms without 

masses.  In this case, the dual CAD system achieved a case-based sensitivity of 80%, 

85%, and 90% at 0.6, 0.9, and 1.2 FP marks/image, respectively, compared with 1.1, 1.6, 

and 2.0 FP marks/image on the single CAD system.  

An important purpose of a CAD system is to serve as a second reader to alert 

radiologists to subtle cancers that may be overlooked.  Figure 10 and Figure 11 compare 

the average FROC curves of the single CAD system and the dual system for detection in 

the test subsets with subtle masses.  The TP rate in Figure 10 was estimated by including 

both malignant and benign masses and that in Figure 11 was estimated from malignant 

masses only.  The single CAD system trained with average masses alone was used. The 

FP rates for both systems were estimated from the mammograms without masses.  The 
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dual CAD system achieved a case-based sensitivity of 50% at 0.7 FP marks/image for all 

masses and at 0.5 FP marks/image for malignant masses only, compared with 1.4 FP 

marks/image for all masses and 1.1 FP marks/image for malignant masses only using the 

single CAD system. 

Table II summaries the test results on the average and subtle mass sets for the 

dual system and the single CAD system trained with average masses at different 

sensitivity levels.  The FP marker rates were estimated from the detection on the normal 

data set. 

 

IV.  DISCUSSION  

The masses on prior mammograms are subtler and more difficult to detect than 

the masses on current mammograms.  In this study, we developed a dual CAD system, 

which combines a system trained with masses on prior mammograms and a system 

trained with masses detected on current mammograms.  We have demonstrated that this 

dual system can increase the accuracy of detecting both average masses and subtle 

masses.  The comparisons of the dual system with that of the single CAD system trained 

with average masses alone and that of the single CAD system trained with both average 

and subtle masses (Figure 7) indicate that the gain in the detection accuracy of the dual 
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system could not be achieved by simply using a larger training set with both average and 

subtle masses. In fact, it is interesting to note that the performance of the single CAD 

system trained with both the average and the subtle masses appeared to be degraded 

slightly, in comparison with the single system trained with average masses alone, when it 

was applied to the test set of average masses. The decreased performance may reflect the 

compromise made when the single CAD system was trained to accommodate a wide 

range of lesion characteristics.  Thus, the dual system approach may have improved its 

performance through other factors, including the flexibility in using different feature 

spaces and training the parameters for each type of masses and the information fusion 

combining the two single CAD systems effectively.    

For the comparison of the different systems, we analyzed the false negatives (FN) 

of the single CAD systems and the dual CAD system when the test subsets with average 

masses were used.  It was found that the FN rates of the single CAD system trained with 

average masses, the single CAD system trained with subtle masses, and the dual system 

were 23.9% (55/230), 28.3% (65/230) and 16.5% (38/230), respectively, after FP 

reduction by the morphological LDA classifier in each system. Twenty-nine masses were 

missed by both of the single systems.  By using the dual system, 53 masses that were FNs 

for either single system could be detected.  However, the masses that were missed by 



 26 

both of the single CAD systems could not be recovered by the dual CAD system.  

The comparison of the FROC curves for the dual CAD system and the single 

CAD system in terms of the area under the fitted AFROC curve (A1) and the p values for 

both test subsets with average masses was summarized in Table III.  The differences 

between the A1 values for the two systems were statistically significant (p<0.05).  The 

fitted AFROC curves, however, did not fit very well to the transformed AFROC data, as 

we discussed previously24.  For the JAFROC method, Chakraborty et al. provided 

software to estimate the statistical significance of the difference between two FROC 

curves.  The comparison of the figure-of-merit (FOM) and the p values was also 

summarized in Table III.  The differences between the FOM of the dual CAD system and 

that of the single CAD system for both test subsets were again statistically significant 

(p<0.05).   

The performance of the dual system in detecting subtle masses was also superior 

to that of the single system trained with average masses (Figure 10). To analyze these 

results statistically, JAFROC and AFROC methods were also used.  It was found that the 

differences between the results of the dual CAD system and those of the single CAD 

system on the two test subsets containing subtle masses were statistically significant by 
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both JAFROC and AFROC methods.  The comparison of the area under the fitted 

AFROC curve (A1), the FOM, and the p values was summarized in Table IV. 

Our motivation of this study is to improve the performance of a CAD system for 

mass detection.  A CAD detection system is generally intended for use in screening 

mammography.  At the screening stage, all lesions of concern should be pointed out to 

radiologists so that the radiologists can judge if a recall is warranted. If a detection 

system is trained to mark only the malignant lesions, it may be attempting to play the role 

of a triage system (alerting radiologists to work up only “malignant” cases) rather than 

that of a second reader.  Furthermore, since computerized lesion detection or 

characterization on mammograms is not 100% sensitive, it will be confusing to the 

radiologists whether an unmarked suspicious lesion is missed or it is considered benign 

by the computer.  We believe that computer-aided diagnosis (CADx) may be used in 

different ways in conjunction with a CAD detection system, for example, the likelihood 

of malignancy may be estimated by the CADx system and displayed for every detected 

lesion, and/or a CADx system may be used during diagnostic workup.  Either way the 

CAD system will first alert radiologists to all masses, leaving the assessment of 

malignancy or benignity to a second stage.  The training set thus included both malignant 

and benign masses. 
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For a CAD system, its performance for detecting malignant masses is more 

important than its performance for detecting all masses.  The FROC curves for detection 

of malignant masses on the average data set and the subtle data set, shown in Figure 9 

and 11, respectively, indicated that the dual system could also achieve an improvement in 

the detection performance over that of the single system.  The differences in the A1 and 

the FOM for the detection of malignant cases in the average and subtle mass test subsets 

were statistically significant, as shown in Table III and IV, respectively.  

In screening mammography, the cancer rate is 3 to 5 per 1000.  Most of the 

mammograms are normal.  Therefore, some CAD researchers and users estimate the FP 

rate using normal mammograms52-54 because it reflects how the CAD system performs in 

terms of specificity and whether the CAD system may cause extra efforts for radiologists 

to double check the marked locations or unnecessary recalls in a screening setting. 

Furthermore, for CAD systems that set a maximum number of detected objects at the 

output, estimating the number of FPs using images with lesions can potentially lead to an 

optimistic bias for the FROC curve because one of the detected objects will likely be the 

true lesion.  The FP rate can thus be underestimated by as much as 1 per image. In 

addition, the JAFROC analysis requires that the FP rates be estimated on normal images.  

We therefore reported the FP rates of our CAD systems on both mammograms with 
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masses and without masses to facilitate comparison with other CAD systems in case 

investigators may evaluate their FP rates in either way.  

In this study, we evaluated the performance of the trained CAD systems with an 

independent test set using the 2-fold cross validation method.  Although the selection of 

parameters and features was performed using the training set, we had the full knowledge 

of the performance for the test set so that the selections could be optimistically biased.  

True independent testing will have to be performed with unknown cases that have never 

been used for testing the CAD system before, such as those in a prospective clinical trial.  

However, this test step is beyond the scope of our current developmental process.  Since 

we used the same cross-validation method for evaluated of the dual system and the single 

CAD systems, the comparison of their relative performances is expected to be less biased 

than their individual performances.   

 

V.  CONCLUSION  

We have proposed a new dual system approach which combines a system trained 

with subtle masses on prior mammograms and a system trained with average masses on 

current mammograms.  The dual system achieved higher sensitivities at the 

corresponding FP rates than a single CAD system trained with average masses alone or 
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trained with both average masses and subtle masses.  Alternatively, the dual system had 

lower FP rates than the single CAD system at corresponding sensitivities.  The 

improvement in the FROC curves by the dual system approach was found to be 

statistically significant (p<0.05) for both average masses and subtle masses using either 

the AFROC or the JAFROC method.  Our results indicate that the dual system approach 

is promising for improving the performance of CAD systems for mass detection on 

mammograms.   
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Table I.  Description of cases in the average and subtle mass data sets and the subsets for 
training and testing in the cross-validation scheme. 

 

 Mass Subset 1 Mass Subset 2 

 Average mass 
subset 

Subtle mass 
subset 

Average 
mass subset 

Subtle mass 
subset 

Total no. of cases 57 54 58 56 

Cases with two 
prior examinations NA 10 NA 9 

Exams with two-
views 57 58 58 65 

Exams with three-
views 0 6 0 0 

Total no. of images 114 134 116 130 

No. of negative 
images  0 25 0 19 

No. of mass images 
for training 114 109 116 111 

No. of two-view 
pairs for testing 57 64 58 65 

No. of images for 
testing 114 128 116 130 

No. of malignant 
masses 36 33 31 29 

No. of benign 
masses 21 21 27 27 
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Table II. Comparison of case-based detection performance between the dual system and 
the single CAD system trained with average masses alone.  The FP marker rates 
were estimated from detection on the normal data set. The FROC curves were 
obtained by averaging the FROC curves of the two test subsets.  

 

Average mass test set 

(FP marks/image) 

 Subtle mass test set 

(FP marks/image) 

TP Single system Dual system Single system Dual system 

90% 2.2 1.2   

80% 1.5 0.7  2.8 

70% 1.0 0.3 2.4 2.3 

60% 0.5 0.2 1.8 1.5 

50% 0.3 0.1 1.4 0.7 
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Table III. Estimation of the statistical significance in the difference between the FROC 
performance of the dual system and the single CAD system trained with 
average masses alone when the systems were evaluated on the average mass 
test subsets.  The FROC curves with the FP marker rates obtained from the 
normal data set were compared. 

 

A1   (AFROC) FOM  (JAFROC) 

All Cases Malignant Cases All Cases Malignant Cases  
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 

Single 
system 0.45 0.44 0.47 0.52 0.48 0.48 0.53 0.55 

Dual 
system 0.55 0.53 0.58 0.62 0.60 0.56 0.63 0.64 

P values 0.0004 0.0156 0.0003 0.0318 <0.0001 0.007 0.0004 0.0252 
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Table IV. Estimation of the statistical significance in the difference between the FROC 
performance of the dual system and the single CAD system trained with average 
masses alone when the systems were evaluated on the subtle mass test subsets.  The 
FROC curves with the FP marker rates obtained from the normal data set were 
compared. 

 

A1   (AFROC) FOM  (JAFROC) 

All Cases Malignant Cases All Cases Malignant Cases  
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 

Single 
system 0.17 0.20 0.24 0.25 0.21 0.23 0.24 0.26 

Dual 
system 0.28 0.25 0.35 0.34 0.30 0.28 0.36 0.34 

P values <0.0001 0.046 <0.0001 0.0067 0.0007 0.048 <0.0001 0.0035 
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Figure 1. The characteristics of the masses in our mass data set: (a) distribution of mass sizes, 

(b) distribution of mass visibility on a 10-point rating scale with 1 representing the 

most visible masses and 10 the most subtle masses relative to the cases seen in 

clinical practice, (c) distribution of mass shapes, (d) distribution of mass margins, C: 

circumscribed, Ind: indistinct, M: microlobulated, Ob: obscured, Sp: spiculated. 
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Figure 2. The distribution of breast density in terms of BI-RADS categories estimated by 

an MQSA radiologist. 



Figure 3. Schematic diagram of our single CAD system for mass detection.  The FP 

classification stage includes rule-based classification, a morphological LDA 

classifier, and a texture feature LDA classifier for differentiating masses from 

normal breast tissues. 
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Figure 4. Schematic diagram of proposed dual CAD system for mass detection.  BP-

ANN is used for information fusion.   
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Figure 5. An example of a scatter plot of the LDA scores from the two single CAD 

systems which are used as input to the BP-ANN.  The correlation coefficient 

between the scores of two LDA classifiers is 0.46, indicating that the two LDA 

scores are essentially independent features. 
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breast tissues.  
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Figure 7. Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent average-mass subsets. Three CAD 

systems were compared: a single CAD system trained with average masses 

alone, a single CAD system trained with both the average and the subtle masses, 

and the dual CAD system.  The FP rate was estimated from the mammograms 

with masses.  (a) Image-based FROC curves, (b) Case-based FROC curves. 
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Figure 8. Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent average-mass subsets. Three CAD systems 

were compared: a single CAD system trained with average masses only, a single 

CAD system trained with the average and the subtle masses, and the dual CAD 

system.  The FP rate was estimated from the mammograms without masses.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 
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Figure 9. Comparison of the average test FROC curves of the single CAD system and the 

dual CAD system for detection of malignant masses in the average data set.  

The single system trained with average masses alone was used and the FP rate 

was estimated from the mammograms without masses. (a) Image-based FROC 

curves, (b) Case-based FROC curves. 
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Figure 10.  Comparison of the average test FROC curves for the single CAD system and 

the dual CAD system for detection of the subtle masses on the prior 

mammograms. The single CAD system trained with average masses alone was 

used and the FP rate was estimated from the mammograms without masses.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 
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Figure 11.  Comparison of the average test FROC curves for the single CAD system and 

the dual CAD system for detection of subtle malignant masses on the prior 

mammograms.  The single CAD system trained with average masses alone was 

used and the FP rate was estimated from the mammograms without masses.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 
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ABSTRACT 
 
In computer-aided detection (CAD) applications, an important step is to design a classifier for the 

differentiation of the abnormal from the normal structures.   We have previously developed a stepwise linear 
discriminant analysis (LDA) method with simplex optimization for this purpose.  In this study, our goal was to 
investigate the performance of a regularized discriminant analysis (RDA) classifier in combination with a feature 
selection method for classification of the masses and normal tissues detected on full field digital mammograms (FFDM).  
The feature selection scheme combined a forward stepwise feature selection process and a backward stepwise feature 
elimination process to obtain the best feature subset.  An RDA classifier and an LDA classifier in combination with this 
new feature selection method were compared to an LDA classifier with stepwise feature selection.  A data set of 130 
patients containing 260 mammograms with 130 biopsy-proven masses was used.  All cases had two mammographic 
views.  The true locations of the masses were identified by experienced radiologists.  To evaluate the performance of 
the classifiers, we randomly divided the data set into two independent sets of approximately equal size for training and 
testing.  The training and testing were performed using the 2-fold cross validation method.  The detection performance 
of the CAD system was assessed by free response receiver operating characteristic (FROC) analysis.  The average test 
FROC curve was obtained by averaging the FP rates at the same sensitivity along the two corresponding test FROC 
curves from the 2-fold cross validation.  At the case-based sensitivities of 90%, 80% and 70% on the test set, our RDA 
classifier with the new feature selection scheme achieved an FP rate of 1.8, 1.1, and 0.6 FPs/image, respectively, 
compared to 2.1, 1.4, and 0.8 FPs/image with stepwise LDA with simplex optimization.  Our results indicate that RDA 
in combination with the sequential forward inclusion-backward elimination feature selection method can improve the 
performance of mass detection on mammograms.  Further work is underway to optimize the feature selection and 
classification scheme and to evaluate if this approach can be generalized to other CAD classification tasks.  
 
Keywords:  computer-aided detection, full field digital mammogram, mass detection, regularized discriminant analysis, 

feature selection 
 
 

1. INTRODUCTION 
 
Breast cancer is the most common cancer among American women1.  Early detection and diagnosis can 

significantly increase the survival rate2-4.  Recent clinical studies have shown that computer-aided detection (CAD) 
systems are helpful for increasing radiologists’ accuracy in detecting breast cancers5-8. 

 
We have been developing CAD systems for detection and characterization of mammographic masses and 

microcalcifications.  Detection of masses on mammograms is more challenging than detection of microcalcifications 
because the normal fibroglandular tissue in the breast causes false positives (FPs) by mimicking masses and causes false 
negatives due to overlapping with the lesions.  Therefore, mass detection systems generally have lower sensitivity and 
higher FP rate than microcalcification detection systems.  We are investigating methods to improve the overall 
performance of our CAD systems. 

 
 False positive (FP) classification is an important step in a CAD system.  The basic approach in two-class 
classification is to assign an unknown sample to one of the two classes on the basis of a multidimensional feature space.  
A number of methods have been proposed in previous studies9-11.  Most of the methods are based on linear discriminant 
analysis (LDA), artificial neural networks, and rule-based classifiers12.  Recently, support vector machines were used to 
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classify the malignant and benign clustered microcalcifications on mammograms13.  In medical imaging application, a 
main problem during the classifier design is the finite sample size available which biases the performance of the trained 
classifier for unknown cases.  In this study, we are investigating the performance of a regularized discriminant analysis 
(RDA) classifier in combination with a feature selection method for classification of the masses and normal tissues 
detected on full field digital mammograms (FFDMs). 

 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 

 
IRB approval was obtained prior to the commencement of this investigation. The images used in this study were 

acquired at the University of Michigan with a GE Senographe 2000D FFDM system before biopsy. The GE system has a 
CsI phosphor/a:Si active matrix flat panel digital detector with a pixel size of mm µµ 100100 ×  and 14 bits per pixel.  A 

data set of 130 cases was used.  All cases had two mammographic views, the craniocaudal (CC) view and the 
mediolateral oblique (MLO) view or the lateral (LM or ML) view.  The data set contained 130 biopsy-proven masses.  
The true locations of the masses were identified by a Mammography Quality Standards Act radiologist.   

 
2.2 Methods 
 
2.2.1 Discriminant Analysis 
  
 Assume that the class distributions are multivariate normal in a two-class classification problem.  Under this 
condition, discriminant analysis models differ essentially by the specific assumptions on the mean vectors and 
covariance matrices of the group conditional densities.  The most commonly used model is linear discriminant analysis 
(LDA) which assumes that the group conditional distributions are multivariate normal distributions with mean vectors 

kµ , where k = 1, 2 is the class index, and equal covariance matrix Σ .  The definition of LDA is given in Eq. (1). 

 

  XY T 1
21 )( −−= Σµµ                                      (1) 

 
where XT=(x1, …, xn) is the feature vector of a sample and n is the dimensionality of the feature space.   If the 
covariance matrices are not equal, one can use quadratic discriminant analysis (QDA), which has a quadratic term for the 
feature vector in its model.  The definition of QDA is described in Eq. (2).  
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1
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1
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−−−− −−−= ΣΣΣΣ µµ                          (2) 

The parameters in LDA and QDA are usually unknown and have to be estimated from training samples.  In medical 
imaging applications, the sample size may be very small in comparison with the dimensionality of the feature space.   
A regularization technique for discriminant analysis, referred to as regularized discriminant analysis (RDA)14, makes use 
of a complexity parameter and a shrinkage parameter to design an intermediate classification model between LDA and 
QDA.  The covariance matrices can thus be written as:  
 

Itr
p kkk ][)1(ˆ ΣΣΣ γγ +−=  ,    k=1, 2                            (3) 

 
where I  is the identity matrix, γ  and p  are the complexity parameter and the shrinkage parameter, respectively.  

In this work, we investigated the use of the RDA classifier for FP reduction in a mass CAD system. 
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2.2.2 CAD System Overview 
 

 
Figure 1.  Block diagram of CAD system for mass detection on FFDMs. 

 
Our CAD system consists of five processing steps: (1) preprocessing by using multi-scale enhancement, (2) pre-

screening of mass candidates, (3) identification of suspicious objects, (4) feature extraction and analysis, and (5) FP 
reduction by classification of normal tissue structures and masses.  The block diagram for the scheme is shown in 
Figure 1.  FFDMs generally are pre-processed with proprietary methods before being displayed to readers.  In an effort 
to develop a CAD system that is less dependent on specific FFDM systems, the raw digital images are used as input to 
our system.  A preprocessing scheme based on a multi-resolution method15 has been developed for image enhancement.  
This scheme consists of three steps.  First, the boundary of the breast is detected automatically by using Otsu’s 
method16.  Second, the Laplacian pyramid is used to decompose the image into multi-scales.  A nonlinear weight 
function is designed to enhance each high-pass component.  Finally, the Gaussian pyramid is used to reconstruct the 
multi-scales.  An example of an original mammogram and the enhanced mammogram are shown in Figs. 2(a) and 2(b), 
respectively.  After preprocessing, gradient field analysis was used to detect the mass candidates from the preprocessed 
FFDMs.  The suspicious objects are then identified by using a clustering based region growing method.  Figures 2(c) 
and 2(d) show the initial detection locations and the grown objects, respectively.  For each suspicious object, eleven 
morphologic features are extracted and rule-based and discriminant classifiers are trained to remove the detected normal 
structures that are substantially different from breast masses.  Global and local multiresolution texture analysis17, 18 are 
performed in each region of interest by using the spatial gray level dependence matrix.  Finally, discriminant 
classification is used to identify potential breast masses.  Further details of this algorithm can be found in the literature19.   

 
In order to obtain the best texture feature subset and reduce the dimensionality of the feature space to design 

an effective classifier, feature selection was applied to the training set.  Stepwise LDA feature selection with Wilks' 
lambda as the selection criterion was employed in our previous study.    Simplex optimization procedure was used to 
choose the best set of feature selection parameters which includes a threshold Fin for feature entry, a threshold Fout for 
feature removal, and a tolerance threshold T for excluding features that have high correlation with the features already in 
the selected pool.  In this study, we compared a new stepwise feature selection procedure with the current method.  In 
the proposed method, a feature selection scheme which combines forward stepwise feature selection and backward 
stepwise feature elimination is used to obtain the best feature subset, using the area under the receiver operating 
characteristic (ROC) curve, Az, as the selection criterion instead of Wilks' lambda.  We evaluated the classifier 
performance using a leave-one-case-out resampling scheme within the training set, the test discriminant scores from the 
left-out cases were analyzed using ROC methodology.  The discriminant scores were input as the decision variable in 
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(clustering-based region growing) 
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the  LABROC program, which fits a binormal ROC curve based on  maximum likelihood estimation.  The performances 
of the RDA classifier and the LDA classifier, both with the new feature selection method, were compared to that of the 
LDA classifier using the Wilks' lambda as the stepwise feature selection criterion in terms of their A z  for the 
classification of masses  and normal tissue. 

 

   
(a) Original image (b) Preprocessed image 

 
(c) Prescreened image 

   
(d) Identified suspicious objects (e) Detection result (f) Image with detected objects 

 
Figure 2: An example demonstrating the processing st eps with our computer-aided mass detection system.  

 
 

3. RESULTS 
 
We randomly separated the cases in our data set into two independent data subsets: 66 and 64 cases.  The 

training and testing were performed using the cross validation method.  The detection performance of the CAD system  

was assessed by free response receiver operating characteristic (FROC) analysis.  FROC curves were presented on a 
per-mammogram and a per-case basis.  For mammogram-based FROC analysis, the mass on each mammogram was 
considered as an independent true obj ect. For case-based FROC analysis, the same mass imaged on the two-view 
mammograms was considered to be one true object and the detection of either or both masses on the two views was 
considered to be a true-positive (TP).  The average test FROC curve was obtained by averaging the FP rates at the same 
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sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  The CAD system using 
RDA with the new feature selection method achieved an image-based sensitivity of 60%, 65%, and 70% at 1.1, 1.4, and 
1.6 FPs/image, respectively, compared with 1.4, 1.7, and 2.1 FPs/image for the CAD system using LDA with the new 
feature selection method.  The CAD system with stepwise LDA and simplex optimization achieved FP rates of 1.6, 1.9, 
and 2.2 FPs/image, respectively, at the same sensitivities, which were comparable to the FP rates of the CAD system 
using LDA with the new feature selection method.  For case-based FROC analysis, the results are summarized in Table 
1.  Figures 3 and 4 show the comparison of the image-based and case-based average FROC curves of the CAD systems 
using the three different classification methods, respectively. 

 
Table 1. Comparison of case-based performance of three methods.  OFS: stepwise feature selection with simplex 

optimization.  NFS: feature selection combining forward feature selection and backward feature 
elimination. 

 
FPs/image 

TP 
LDA-OFS LDA-NFS RDA-NFS 

70% 0.8 0.7 0.6 
80% 1.4 1.3 1.1 
90% 2.1 2.2 1.8 
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Figure 3. Comparison of image-based FROC curves. 

OFS: stepwise feature selection with simplex 
optimization.  NFS: feature selection 
combining forward feature selection and 
backward feature elimination. 

Figure 4. Comparison of case-based FROC curves. 
OFS: stepwise feature selection with simplex 
optimization.  NFS: feature selection 
combining forward feature selection and 
backward feature elimination. 

 
4. DISCUSSION AND CONCLUSIONS 

 
We previously developed a CAD system for detection of masses on FFDMs.  In this study, we investigated the 

use of an RDA classifier with a new feature selection method.  Our results indicated that the new FP classifier can 
improve the overall performance of our CAD system.  Further work is underway to optimize the feature selection and 
classification scheme and to evaluate if this approach can be generalized to other CAD classification tasks.  
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ABSTRACT 
 
We are developing a two-view information fusion method to improve the performance of our CAD system for 

mass detection.  Mass candidates on each mammogram were first detected with our single-view CAD system.  
Potential object pairs on the two-view mammograms were then identified by using the distance between the object and 
the nipple.  Morphological features, Hessian feature, correlation coefficients between the two paired objects and texture 
features were used as input to train a similarity classifier that estimated a similarity scores for each pair.  Finally, a 
linear discriminant analysis (LDA) classifier was used to fuse the score from the single-view CAD system and the 
similarity score.  A data set of 475 patients containing 972 mammograms with 475 biopsy-proven masses was used to 
train and test the CAD system.  All cases contained the CC view and the MLO or LM view.  We randomly divided the 
data set into two independent sets of 243 cases and 232 cases.  The training and testing were performed using the 2-fold 
cross validation method.  The detection performance of the CAD system was assessed by free response receiver 
operating characteristic (FROC) analysis.  The average test FROC curve was obtained from averaging the FP rates at 
the same sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  At the case-based 
sensitivities of 90%, 85% and 80% on the test set, the single-view CAD system achieved an FP rate of 2.0, 1.5, and 1.2 
FPs/image, respectively.  With the two-view fusion system, the FP rates were reduced to 1.7, 1.3, and 1.0 FPs/image, 
respectively, at the corresponding sensitivities.  The improvement was found to be statistically significant (p<0.05) by 
the AFROC method.  Our results indicate that the two-view fusion scheme can improve the performance of mass 
detection on mammograms. 
 
Keywords: computer-aided detection, two-view fusion, mass detection, AFROC analysis 
 
 

1. INTRODUCTION 
 

Breast cancer is one of the leading causes of cancer mortality among women1.  There is considerable evidence 
that early diagnosis and treatment significantly improves the chance of survival for patients with breast cancer 2-5.  
Although mammography has a high sensitivity for detection of breast cancers when compared to other imaging 
modalities, studies indicate that radiologists do not detect all carcinomas that are visible upon retrospective analyses of 
the images6-11.  It has been shown that computer-aided detection (CAD) can improve the sensitivity of mammography 
in prospective clinical trials12-15.   CAD is thus a viable cost-effective alternative to double reading by radiologists.   

The mass detection systems to-date generally employed a single-view detection approach using various 
techniques for prescreening of mass candidates and classification of true and false positives16-25.  We have been 
developing CAD systems for detection of mammographic masses on full field digital mammograms (FFDMs)25 and 
screening film mammograms (SFMs)22.  Our previous study23 showed that two-view fusion method can improve the 
performance of a CAD system for mass detection on mammograms.  In this study, our purpose is to improve the 
performance of the two-view information fusion method and to test our method in a relatively larger data set. 

 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 
 

Medical Imaging 2006: Image Processing, edited by Joseph M. Reinhardt, Josien P. W. Pluim,
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All mammograms in this study were collected from patient files in the Department of Radiology at the 
University of Michigan with Institutional Review Board (IRB) approval.  The mammograms were digitized with a 
LUMISYS 85 laser film scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was calibrated to 
have a linear relationship between gray levels and optical densities (O.D.) from 0.1 to greater than 3 O.D. units.  The 

nominal O.D. range of the scanner is 0–4.  The full resolution mammograms were first smoothed with a 2×2 box filter 

and subsampled by a factor of 2, resulting in images with a pixel size of 100µm×100µm.  These images were used for 
the input of our CAD system.  The data set we used in this study contained 475 cases, of which 464 cases had the two-
view mammograms (the craniocaudal (CC) view and the mediolateral oblique (MLO) view or the lateral view) and 11 
cases had four-view mammograms, resulting in a total of 972 mammograms.  All mammograms were obtained before 
biopsy.  There were 475 biopsy-proven masses in this data set.  

 
 

2.2 Methods 
 
2.2.1 Single-view System Overview 

 

Figure 1.  Block diagram of a single CAD system for mass detection on mammograms. 
 
Our single-view CAD system consists of five processing steps: 1) pre-screening of mass candidates, 2) 

identification of suspicious objects, 3) extraction of morphological and texture features, and 4) classification between the 
normal and the abnormal regions by using rule-based and LDA classifiers.  The block diagram for the single-view CAD 
system is shown in Figure 1.  Figure 2 shows an example demonstrating the processing steps with our computer-aided 
mass detection system.  For the pre-screening stage, we have developed a two-stage gradient field analysis method 
which combines the shape information of masses on mammograms with the gray level information of the local object 
segmented by a region growing technique in the second stage to refine the gradient field analysis.  The gradient field 
analysis is used to determine locations of high convergence of radial gradient in the image.  A region of interest (ROI) 
is then identified with its center placed at each location of high gradient convergence.  The object in each ROI is 
segmented by a region growing method in which the location of high gradient convergence is used as the starting point.  
Figures 2(b) and 2(c) show the initial detection locations and the grown objects, respectively.  After region growing, all 
connected pixels constituting the object are labeled.  Finally, the gradient convergence at the center location of the ROI 
is recalculated within the segmented object.  The objects whose new gradient convergence is lower than 80% of the 
original value are rejected.  After prescreening, the suspicious objects are identified by using a clustering-based region 
growing method.  For each suspicious object, eleven morphological features are extracted.  Rule-based and LDA 
classifiers are trained to remove the detected normal structures that are substantially different from breast masses.  
Global and local multiresolution texture analyses are performed in each ROI by using the spatial gray level dependence 

Mammogram 

Digitization 
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(SGLD) matrices at different pixel spaci ngs and angular directions.  In order to obtain the best feature subset and 
reduce the dimensionality of the feature space to design a robust classifier, feature selection with stepwise linear 
discriminant analysis is performed.  Finally, LDA classification is used to identify potential breast masses.  Figure 
2(d) shows the final detected objects, and Figure 2(e) shows the locations of these objects superimposed on the 
mammogram. 

 

 
2.2.2 Two-View Fusion 

 
In order to improve the overall performance of our CAD system for detection of masses, we developed a two-

view fusion technique which combines the information from two mammographic views.   The fusion method used in 
this study is based on the assumption that the corresponding true mass on two different mammographic views will 
exhibit similarities in their geometric, morphological and textural features which are relatively invariant with respect to 
the imaging views.  On the other hand, FPs detected by  CAD system are expected to exhibit a lesser degree of 
similarity because they are usually objects formed by different normal tissues.   

For a given object on one view, geometric pairing is fi rst performed using the nipple-to-object distance as the 
average radius of an annular region on the other view within which the detected objects can be paired with the given 

  
(a) Original image (b) Prescreened image 

  

 
(c) Identified suspicious objects (d) Detection result (e) Image with detected objects 

Figure 2.  An example demonstrating the processing steps with our single-view CAD system for mass detection. 
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object.  Manually identified nipple locations are used for the registration in this study.  We are developing an 
automated nipple detection technique26 and the automated method will be used when it reaches high accuracy.  
Similarity measures between each pair of objects are derived from the pairs of individual object features.  The similarity 
features include morphological features, Hessian feature, correlation coefficients between the two paired objects and 
texture features.  A similarity classifier is trained to distinguish between true and false pairs by merging the similarity 
features into a similarity score for each object.  The similarity score and the single-view object score of the object are 
then fused to form a final score for the object.  Our two-view system is summarized in Figure 3. 
 

 
 

Figure 3.  Block diagram of the two-view CAD system for mass detection on mammograms. 
 

 
3. Experimental Results 

 
   We randomly separated the cases in our data set into two independent equal sized data sets: 243 cases with 494 
images and 232 cases with 478 images.  The training and testing were performed using the 2-fold cross validation 
method.  The detection performance of the CAD system was assessed by free response receiver operating characteristic 
(FROC) analysis.  FROC curves were presented on a per-mammogram and a per-case basis.  For mammogram-based 
FROC analysis, the mass on each mammogram was considered an independent true object.  For case-based FROC 
analysis, the same mass imaged on the two-view mammograms was considered to be one true object and the detection of 
either or both masses on the two views was considered to be a true-positive (TP).  To evaluate the overall test 
performance, an average test FROC curve was obtained from averaging the FP rates at the same sensitivity along the two 
corresponding test FROC curves from the 2-fold cross validation.  When the single-view CAD system was applied to 
the test set, the FPs/image were 2.0, 1.5, and 1.2 at the case-based sensitivities of 90%, 85% and 80%, respectively.  
With the two-view CAD system, the FP rates were improved to 1.7, 1.3, and 1.0 FPs/image at the same case-based 
sensitivities.  Figure 4 and 5 shows the comparison of the test performance of the single-view CAD system and the two-
view CAD systems by using image-based and case-based average FROC curves, respectively.  To analyze the 
improvement in the FROC curves statistically, an alternative free-response ROC (AFROC) method27 was employed.  In 
the AFROC method, false-positive images (FPI) instead of FPs per image are counted.  The confidence rating of an FPI 
is determined by the highest confidence FP decision on the image regardless of how many lower confidence FP decisions 
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are made on the same image.  The ROCKIT software developed by Metz et al28 is used to analyze the AFROC data.  
The comparison of the A1 and the p values is summarized in Table 1.   
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Figure 4.   Image-based average FROC curves obtained 

from averaging the corresponding FROC curves of the 
two test subsets. Single-view: detection by the single-
view CAD system. Two-view: detection by the two-
view CAD system. 

 

 
Figure 5.  Case-based average FROC curves obtained 

from averaging the corresponding FROC curves of 
the two test subsets.  Single-view: detection by the 
single-view CAD system.  Two-view: detection by 
the two-view CAD system. 

  
 

Table 1.  Estimation of the statistical significance in the difference between the FROC 
performances of the single-view CAD system and the two-view CAD system.   

 
A1 (AFROC)  

Test Set 1 Test Set 2 
One-view CAD 0.52 0.51 
Two-view CAD 0.55 0.54 

P Value <0.0001 <0.0001 
 

 
4. DISCUSSION AND CONCLUSIONS 

 
In this study, we developed a two-view CAD system to improve the computerized detection of masses on 

mammograms. The two-view CAD system is different from case-based scoring, in which detection of the same mass in 
either the CC view or the MLO view will be counted as a true positive, in that the detected objects in the two views are 
correlated and analyzed for similarity and the likelihood score of a mass detected in both views may be enhanced 
compared with FPs.  Our results indicate that two-view fusion can significantly improve the overall performance of the 
single-view CAD system.  Future work will include automated identification of nipple locations and optimization of the 
fusion scheme in our system.   
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